Categories: Planets

Astronomy Jargon 101: Albedo

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll be dazzled by today’s topic: albedo!

The English word “albedo” comes from the Latin word for “whiteness”, which is…albedo. It’s a measure for how reflective a surface is, determined by the fraction of the sun’s radiation that bounces back into space. It’s measured on a scale from 0 to 1. Very dark, dull objects have low albedos, closer to 0, while white objects have high albedos, closer to 1.

Unless otherwise specified, the albedo is measured from the total amount of solar radiation hitting the object in question. That said, the albedo for solar system bodies is usually measured in the wavelength range of the sun’s output that most easily makes it to the surface. This wavelength range, from 0.3 to 3 micrometers, includes visible light, so the albedo for a given object is usually closely tied to its visual appearance.

In other words, you could probably pretty easily guess the albedo of a random object.

The Moon has an average albedo of only 0.11, but it appears so bright because it’s close to us. That’s about the same albedo as old, worn asphalt, but far less than the albedos of green grass (0.25) and fresh snow (0.8). Among the planets, Venus has the highest albedo at a whopping 0.689, while Mercury has the lowest at a paltry 0.142.

The albedo of a planet is a critical number, because it tells astronomers how much solar radiation the planet is capable of absorbing. For the Earth, it’s a major player in determining our climate. The amount of sea ice, land cultivation, cloud cover, and more impact the Earth’s albedo, which then goes on to change our average temperature.

In the case of climate change, the albedo can set up a nasty feedback loop. If the Earth warms a little bit, then more ice will melt, which will lower our albedo. That will allow the Earth to absorb more solar radiation, heating up the atmosphere and melting more ice, starting the cycle over again. That’s one of the many reasons why even a little bit of climate change can be very concerning.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

1 hour ago

NASA’s New Solar Sail Has Launched and Deployed

Solar Sails are an enigmatic and majestic way to travel across the gulf of space.…

2 hours ago

Here’s Why We Should Put a Gravitational Wave Observatory on the Moon

Scientists detected the first long-predicted gravitational wave in 2015, and since then, researchers have been…

8 hours ago

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

1 day ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

1 day ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago