Categories: Astronomy

Astronomy Jargon 101: Adaptive Optics

In this series we are exploring the weird and wonderful world of astronomy jargon! Adjust your eyeglasses to read about today’s topic: adaptive optics!

Let’s say you’re an astronomer. You’ve built yourself a gigantic new observatory to study the heavens above. You look through the eyepiece (or more accurately, the computer screen), expecting the glory of space to reveal itself to you. Instead, to your frustration, you find only a blurry, wiggly mess.

Earth’s atmosphere is pretty good when it comes to keeping living things alive, but pretty terrible when it comes to astronomy. No matter how big your telescope is, how sophisticated, and how powerful, as long as it’s on the ground it has to contend with all those miles of thick atmosphere.

The problem is the ever-shifting turbulent motions of hot and cold air as they struggle to evenly distribute heat throughout the globe. Warm and cold air have different indices of refraction, meaning that they bend the path of light differently. So light from a distant star doesn’t follow a straight line on its way through our atmosphere – it constantly shifts, zigging and zagging as the air moves.

It’s exactly the same process that makes stars twinkle. It’s pretty, but annoying.

Sure, you can mitigate some of this by building your observatory in a desert (to keep the air as still as possible) and/or on top of a mountain (to minimize the amount of air between you and space), but you can’t get rid of it.

You could just launch your observatory into space, but rocket farings are only so big, and launches are so dang expensive, that it’s much more cost-effective to leave your giant observatory on the ground.

The solution? Bust out the lasers and do some adaptive optics.

Shoot a bright laser up into the sky. Watch as it dances due to the same atmospheric distortions that are messing up your observations. Stick the mirror of your telescope on an adjustable table. When the laser shifts, shift your mirror with it, cancelling out the effects of the turbulent atmosphere.

It’s a simple idea, but very difficult to put into practice. One of the origins of the development of the technology came from classified research by the U.S. military to better track enemy satellites. It wasn’t until the 1990’s that the technology matured enough to make it a mainstay of modern astronomy.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

NASA is Building a Nuclear Reactor to Power Lunar and Martian Exploration!

NASA and the U.S. Dept. of Energy have come together to solicit design proposals for…

17 hours ago

InSight Peers Deep Below the Surface on Mars

The InSight lander has been on Mars, gathering data for a thousand days now, working…

2 days ago

Astronauts Took A Fly-around of the International Space Station. Here are Their Stunning Pictures

When astronauts left the International Space Station in early November to return home on the…

2 days ago

NASA Simulation Shows What Happens When Stars Get Too Close to Black Holes

What happens to a star when it strays too close to a monster black hole?…

2 days ago

The Parker Solar Probe is getting pelted by hypervelocity dust. Could they damage spacecraft?

There’s a pretty significant disadvantage to going really fast - if you get hit with…

3 days ago

The Decadal Survey is out! What new Missions and Telescopes are in the Works?

It’s that time again.  Once every ten years, the American astronomy community joins forces through…

3 days ago