Categories: Black Holes

Space Telescopes Could Provide Next-Level Images of Black Hole Event Horizons

Back in 2019, the world was treated to the first ever image of a black hole, which was originally captured in 2017.  The feat was widely heralded as a leap forward for astrophysics, supporting Einstein’s Theory of Relativity.  Now a team led by the Radboud University proposes sending instruments into space to estimate black hole parameters more accurately by an order of magnitude.  The newest paper, led by Dr. Volodymyr Kudriashov, translates science goals into technical requirements and focuses on the instrumentation needed for the Event Horizon Imager, as the mission is called.

The paper mainly considers logging data from the “easiest to capture” black holes, though it is possible to image other objects and to make black hole movies where observers could see black holes in action.  As a proof of concept, the team pointed and took some preliminary images of the “easiest” black holes and confirmed that image reconstructions would work for higher resolutions.  Now, the project faces the biggest obstacle of most space missions – getting launched, preferably on a budget.

Mode of how the EHI could fit in to an Arianne 6 rocket, with room to spare.
Credit: Kudriashov et al.

The mission itself calls for two separate satellites orbiting in mid-Earth orbit about 26,000 km (16,000 m) from each other.  Data links over such long distances may probe a problem though, so the team developed a system for handling usual “raw’’ data.  This novel system will leverage on both on-board GPS and a laser between telescope-satellites and will allow the data rate back to Earth to be tiny.  Utilizing optical inter-satellite communication seems feasible if the system avoids one potential hazard of such optical systems – being blocked by clouds.  Luckily, the team found plenty of relevant space inter-satellite laser technologies for ranging and communication that they could utilize, including some that area already flying in space now.

Such a system would be worth it if it captures data that can be used to compare the competing gravitational theories that have divided the physics community for decades.  Though there are no concrete plans to launch a system similar to the EHI any time soon, imaging black holes from space is at the recommendations of Voyage 2050 ESA`s Senior Committee, so such a system is already on the long term roadmap of the astronomical community.

UT video discussing the first image of a black hole.

Learn more:

Lead Image:
M87’s black hole with magnetic field lines.
Credit: EHT Collaboration

Andy Tomaswick

Recent Posts

NASA is Going Ahead With a Hopping Lander to Explore the Lunar Surface

Methods of movement for robotic explorers of other worlds have been as varied as the…

1 hour ago

Two Bizarre red Asteroids Somehow Migrated From the Kuiper Belt all the way to the Main Asteroid Belt

If asked to pick what color asteroids in the asteroid belt would be, red is…

2 hours ago

NASA Chooses Falcon Heavy Over SLS to Launch Europa Clipper, Saving About $2 Billion

The bureaucracy of government control is slowly fading away in space exploration, at least in…

1 day ago

A Black Hole Emitted a Flare Away From us, but its Intense Gravity Redirected the Blast Back in our Direction

Using the XMM-Newton and NuSTAR X-ray telescopes, an international team of scientists were able to…

2 days ago

Lightweight Carbon Fiber Reinforced Plastic Fuel Tanks Pass a Critical Test, and Could Knock a lot of Weight off a Rocket’s dry Mass

Material science is still the unsung hero of space exploration.  Rockets are flashier, and control…

3 days ago

InSight has Mapped out the Interior of Mars, Revealing the Sizes of its Crust, Mantle, and Core

In a series of newly-published papers, NASA scientists have shown how InSight's seismic data allowed…

4 days ago