Categories: Astronomy

Next up, Juno has Ganymede in its Sights

NASA’s Juno mission is set for a close encounter with the Solar System’s largest moon, Ganymede, on Monday. This will be the first flyby of the icy world since the Galileo and Cassini spacecraft jointly observed the moon in 2000. New Horizons also got a quick snap of Ganymede as it slingshotted around Jupiter on its way out to Pluto in 2007, but from a distance of 3.5 million kilometers away. Juno’s pass on Monday will get much closer, approaching within 1038 kilometers of the surface.

This pass over Ganymede is the first in a series of flybys past Jupiter’s Galilean moons, which will collectively be the highlight of Juno’s extended mission. The probe’s primary mission, which began in 2016, focused on the gas giant itself. Juno has been taking long, highly elliptical orbits around Jupiter, diving close in to collect data about the planet, before swinging way out again beyond the planet’s harmful radiation, which threatens the spacecraft’s hardware if it stays too long.

Ganymede as seen by Galileo. Credit: Pablo Carlos Budassi (Wikimedia Commons)

Juno will continue to study Jupiter during its extended mission, but its orbit will now swing it up over the poles, which had previously been hidden, and will also help put the planet in context. For example, Juno will carry out the first systematic examination of Jupiter’s faint ring system, as well as visiting some of its moons.

The science goals for Monday’s encounter with Ganymede are wide-ranging. Juno will, of course, take visible-light photos with JunoCam, which, besides being spectacular to look at, will allow planetary scientists to observe changes in Ganymede’s surface over time: the photos can be compared to Galileo’s from 20 years ago and Voyager’s from 40 years ago.

Ganymede is the only moon with its own magnetosphere, so Juno’s team is hoping to study it. Jet Propulsion Laboratory’s Dustin Buccino explains that “As Juno passes behind Ganymede, radio signals will pass through Ganymede’s ionosphere, causing small changes in the frequency that should be picked up by two antennas at the Deep Space Network’s Canberra complex in Australia. If we can measure this change, we might be able to understand the connection between Ganymede’s ionosphere, its intrinsic magnetic field, and Jupiter’s magnetosphere.”

Juno will also use its microwave radiometer to examine Ganymede’s ice-crust, which will tell us more about its composition, temperature, and structure.

Ganymede as compared to Earth’s moon. Ganymede is 5,268 kilometers across. Credit: Apollo 17 Earth: NASA; Telescopic Image of the Full Moon by Gregory H. Revera, Computer-enhanced image of Ganymede: NASA/JPL/DLR.

Ganymede is a fascinating world. Being larger than Mercury, it would be classified as a planet if it orbited the Sun instead of Jupiter. It’s also intriguing because it’s a water world, with liquid oceans beneath its surface. This makes it one of the best solar system candidates for microbial alien life. On the other hand, Ganymede’s ocean might not have contact with rock at its bottom, instead being encased between two layers of ice sheets. On Earth, the chemical reactions caused by water contacting rock provide energy for some types of microbes – if Ganymede’s ocean lacks this key ingredient, it may be sterile, but the jury is still out.

Liquid water-rock contact is expected to exist on another of Jupiter’s moons, however: Europa. In the coming years, Juno will visit Europa too, more than once. Juno’s extended mission will also give it a close-up look at Io, Jupiter’s fiery innermost moon, a place more volcanically active than anywhere else in the Solar System. We can expect some stunning imagery, and new science, out of these upcoming flybys. Observations taken by Juno will complement and set the stage for two upcoming missions to Jupiter’s moons. The European Space Agency’s JUICE will launch in 2022, exploring Ganymede, Callisto, and Europa in more detail. NASA’s Europa Clipper will follow later in the 2020s.

Learn more: “NASA’s Juno to Get a Close Look at Jupiter’s Moon Ganymede,” JPL.

Featured Image: Mosaic and geologic map of Ganymede from Voyager and Galileo Data. Credit: USGS Astrogeology Science Center/Wheaton/NASA/JPL-Caltech.

Scott Alan Johnston

Scott Alan Johnston is a science writer/editor at the Perimeter Institute for Theoretical Physics, a contributor at Universe Today, and a historian of science. He is the author of "The Clocks are Telling Lies," which tells the story of the early days of global timekeeping, when 19th-century astronomers and engineers struggled to organize time in a newly interconnected world. You can follow Scott on Twitter @ScottyJ_PhD

Recent Posts

Mars InSight Has One Last Job: Getting Swallowed by Dust on the Red Planet

Normally you don't want dust to get into your spacecraft. That was certainly true for…

5 hours ago

Merging Black Holes Could Give Astronomers a Way to Detect Hawking Radiation

Nothing lasts forever, including black holes. Over immensely long periods of time, they evaporate, as…

6 hours ago

Starlinks Can Produce Surprisingly Bright Flares to Pilots

How can sunlight reflecting off SpaceX’s Starlink satellites interfere with ground-based operations? This is what…

21 hours ago

A Weather Satellite Watched a Space Rock Burn Up Above Spain and Portugal

It's been a momentous May for skywatchers around the world. First the big auroral event…

1 day ago

Galaxies in the Early Universe Preferred their Food Cold

One of the main objectives of the James Webb Space Telescope (JWST) is to study…

1 day ago

A New Way to Measure the Rotation of Black Holes

Sometimes, astronomers get lucky and catch an event they can watch to see how the…

2 days ago