Categories: neutrinos

Almost all High-Energy Neutrinos Come From Quasars

Buried under the ice at the South Pole is a neutrino observatory called IceCube. Every now and then IceCube will detect a particularly high-energy neutrino from space. Some of them are so high energy we aren’t entirely sure what causes them. But a new article points to quasars as the culprit.

Quasars are distant supermassive black holes. During the early universe, many of these black holes were extremely active. The hot material surrounding these black holes can emit everything from x-rays to powerful bursts of radio light. In this new work, the team analyzed 7 years of data from IceCube and found an interesting correlation between quasars and high-energy neutrinos.

Map comparing quasar locations to probable neutrino sources. Credit: Plavin, et al

The data showed that most of the high-energy neutrinos originated from the centers of quasars. Their detection often occurs around the time that a quasar undergoes a strong radio burst. Since neutrinos travel at nearly the speed of light, photons and neutrinos reach Earth and nearly the same time. This suggests that the quasar radio bursts are producing neutrinos.

To explain this, the team proposed a rough model. Strong radio quasar bursts occur when hot, ionized gas near the black hole flows through strong magnetic fields. The charged particles are accelerated, causing them to emit radio light. But a rapid flow of dense plasma also causes nuclei and electrons to collide with each other. The high-energy collision of protons can create pions, which emit gamma rays and neutrinos when they decay.

How quasars might create high-energy neutrinos. Credit: Plavin, et al

This is only a rough model. To study their idea further, the team will gather more radio observations of quasars, as well as data from a neutrino telescope known as the Baikal Gigaton Volume Detector. Together this will allow them to study the central regions of quasars in detail.

Reference: Plavin, A. V., et al. “Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars.” The Astrophysical Journal 908.2 (2021): 157.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer. He writes about astronomy and astrophysics on his blog. You can follow him on Mastodon @briankoberlein@mastodon.social.

Recent Posts

NASA Gets a Firm Grip on the Future of Space Exploration

As part of their ongoing mission to push the boundaries of space exploration, NASA’s cutting-edge…

3 hours ago

Yes, the Odds of an Asteroid Striking Earth Have Doubled. No, You Don’t Need to Worry

The odds of 2024 YR4 striking Earth in 2032 have doubled to 2.3%, but that's…

7 hours ago

Europa Clipper Tests its Star Tracker Navigation System

On October 14th, 2024, NASA's Europa Clipper mission launched atop a Falcon Heavy rocket from…

2 days ago

The Moon has Two Grand Canyons, Carved in Minutes by an Asteroid Impact

Our Moon continues to surprise us with amazing features. Scientists recently shared new information about…

3 days ago

Is Methane the Key to Finding Life on Other Worlds?

How would detecting methane help astronomers identify if exoplanets, or even exomoons, have life as…

3 days ago

Space Junk Could Re-Enter the Atmosphere in Busy Flight Areas

In the more than 60 years since the Space Age began, humans have sent more…

3 days ago