Categories: Astronomy

New Technique Can Estimate Size and Frequency of Meteorite Impacts

News today from the National Science Foundation will have an impact on how scientists are able to study…. well, impacts. A team of geologists has developed a new way of determining the size and frequency of meteorites that have collided with Earth in the past. By studying sediments found on the ocean floor and looking for isotopes of the rare element osmium, scientists can now figure out not only when a meteorite impact occurred in Earth’s history, but also the size of the meteorite. One of the most exciting benefits of this new technique is the potential for identifying previously unknown impacts.

When meteorites collide with Earth, they carry a different osmium isotope ratio than the levels normally seen throughout the oceans.

“The vaporization of meteorites carries a pulse of this rare element into the area where they landed,” says Rodey Batiza of the National Science Foundation, which funded the research. “The osmium mixes throughout the ocean quickly. Records of these impact-induced changes in ocean chemistry are then preserved in deep-sea sediments.”

François Paquay, a geologist at the University of Hawaii at Manoa analyzed samples from two sites where core samples of the ocean floor were taken, one near the equatorial Pacific and another located off of the tip of South Africa. He measured osmium isotope levels during the late Eocene period, a time during which large meteorite impacts are known to have occurred.

“The record in marine sediments allowed us to discover how osmium changes in the ocean during and after an impact,” says Paquay.

The scientists believe this new approach to estimating impact size will become an important complement to a more well-known method based on iridium.

Paquay’s team also used this method to make estimates of impact size at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Since the osmium carried by meteorites is dissolved in seawater, the geologists were able to use their method to estimate the size of the K-T meteorite as four to six kilometers in diameter. The meteorite was the trigger, scientists believe, for the mass extinction of dinosaurs and other life forms.

But Paquay doesn’t believe this method will work for events larger than the K-T impact. With such a large meteorite impact, the meteorite contribution of osmium to the oceans would overwhelm existing levels of the element, making it impossible to sort out the osmium’s origin.
But it will be interesting to follow this to see if new, unknown impacts in Earth’s history can be discovered.

Original News Source: Eureka Alert

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

1 day ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

1 day ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

2 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

2 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

2 days ago