Categories: Solar Astronomy

The Sun’s Magnetic Fountains

For you solar observing fans, enjoy the beauty. Over the years both the public and astronomers alike have witnessed the Sun’s volatile and ever-changing atmosphere. Before our eyes huge geysers of hot gas spew into the solar corona at tens of thousands of km per hour. Every few minutes they erupt and reach dynamic proportions. Now a team of scientists have used the Hinode spacecraft to find the origin and progenitor of these fountains – immense magnetic structures that thread through the solar atmosphere.

Today at the Royal Astronomical Society National Astronomy Meeting in Belfast (NAM 2008), team leader Dr. Michelle Murray from the Mullard Space Science Laboratory (MSSL, University College London) presented the latest results from Hinode spacecraft combined with computer emulated solar conditions. Since its launch in October 2006, scientists have been using Hinode to examine the solar atmosphere in extraordinary detail. One of it’s premier instruments is the Extreme Ultraviolet Imaging Spectrometer. The EIS generates images of the Sun and gives information on the speed of the moving gases.

At the core of the solar magnetic field, immense jets of hot gas are forced to the surface through increases in pressure. Just like an earthly geyser, when the pressure releases the gases fall back towards the Sun’s surface. But what causes the pressure? Unlike the volcanic activity that drives the terrestrial phenomena, solar fountains are caused by rearrangements of the Sun’s magnetic field, a continual process that results in looping cycles of increasing and decreasing pressure.

“EIS has observed the Sun’s fountains in unprecedented detail and it has enabled us to narrow down the fountains’ origins for the first time”, comments team member and MSSL postgraduate student Deb Baker. “We have also been able to find what drives the fountains by using computer experiments to replicate solar conditions.”

The sun-observing Hinode satellite is now in a sun-synchronous orbit, which allows it to observe the sun for uninterrupted periods lasting months at a time. Using a combination of optical, EUV and X-ray instrumentation Hinode will study the interaction between the Sun’s magnetic field and its corona to increase our understanding of the causes of solar variability.

“The computer experiments demonstrate that when a new section of magnetic field pushes through the solar surface it generates a continual cycle of fountains”, explains Dr. Murray, “but new magnetic fields are constantly emerging across the whole of the solar surface and so our results can explain a whole multitude of fountains that have been observed with Hinode.”

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

China Creates a High-Resolution Atlas of the Moon

Multiple space agencies are looking to send crewed missions to the Moon's southern polar region…

11 hours ago

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

2 days ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

2 days ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

2 days ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

3 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

3 days ago