This Is The Highest Resolution Image Of Europa We Have … For Now

This is the highest resolution image taken by Galileo at Europa — Jupiter’s 4th largest moon — until our next mission to the planet. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The gray line down the middle resulted from missing data that was not transmitted by Galileo. Credit: NASA/JPL-Caltech

In the movie 2010: The Year We Make Contact, the sequel to Stanley’s Kubrick’s 2001: A Space Odyssey, black Monoliths multiply, converge and transform Jupiter into a new star. We next hear astronaut David Bowman’s disembodied voice with this message: “All these worlds are yours except Europa. Attempt no landing there.” The newborn sun warms Europa, transforming the icy landscape into a primeval jungle. At the end, a single Monolith appears in the swamp, waiting once again to direct the evolution of intelligent life forms.

Europa’s cracked, icy surface imaged by NASA’s Galileo spacecraft in 1998. Credit: NASA/JPL-Caltech/SETI Institute

Stay away from Europa? No way. It’s just too fascinating a place with its jigsaw-puzzle ice sheets, crisscross valleys, miles of ice on top and a warm, salty ocean below. The movie was prescient — if you’re going to search for life elsewhere in the solar system, Europa’s one of the best candidates.

While we’ve sent spacecraft to photograph and study the icy moon during orbital flybys, no lander has yet to touch the surface. That may change soon. In early 2016, in response to a congressional directive, NASA’s Planetary Science Division began a pre-Phase A study to assess the science value and engineering design of a future Europa lander mission. In June 2016, NASA convened a 21-member team of scientists for the Science Definition Team (SDT). The team put together set of science objectives and measurements for the mission concept and submitted the report to NASA on Feb. 7.

This artist’s rendering illustrates a conceptual design for a potential future mission to land a robotic probe on the surface of Jupiter’s moon Europa. The lander is shown with a sampling arm extended, having previously excavated a small area on the surface. The circular dish on top is a combo high-gain antenna and camera mast, with stereo imaging cameras mounted on the back of the antenna. Three vertical shapes located around the top center of the lander are attachment points for cables that would lower the rover from a sky crane, the planned landing system for this mission concept. Credits: NASA/JPL-Caltech

The report lists three science goals for the mission. The primary goal is to search for evidence of life on Europa. The other goals are to determine the habitability of Europa by directly analyzing material from the surface, and to characterize the surface and subsurface to support future robotic exploration of Europa and its ocean.

This image from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. The red staining occurs in areas where briny waters from below — possibly mixed with sulfur — reach the surface. Radiation from Jupiter bombards the material, causing it to redden. Gravitational flexing of the moon as it orbits Jupiter fractures the icy crust into a chaotic landscape of snaking valleys and ice sheets. It also warms the ocean beneath the crust, potentially making it habitable. Credit: NASA/JPL-Caltech

The evidence is quite strong that Europa, with a diameter of 1,945 miles — slightly smaller than Earth’s moon —  has a global saltwater ocean beneath its icy crust. This ocean has at least twice as much water as Earth’s oceans. Two things make Europa’s ocean unique and give the moon a greater chance of supporting microbial life compared to say, Ganymede and Enceladus, which also hold water reservoirs beneath their crusts.

Astronomers hypothesize that chloride salts bubble up from the icy moon’s global liquid ocean and reach the frozen surface where they are bombarded with sulfur from volcanoes on Jupiter’s innermost large moon Io. Molecular signs of life may be transported where they could be detected by a spacecraft.  In this illustration, we see Europa (foreground), Jupiter (right) and Io (middle). Credit: NASA/JPL-Caltech

One: the ocean is relatively close to the surface, just 10-15 miles below the moon’s icy shell. Radiation from Jupiter (high-speed electrons and protons) bombards ice, sulfur and salts on the surface to create compounds that could trickle down into warmer regions and used by living things for growth and metabolism.

Broken plates and blocks of water ice now frozen in place in Europa’s crust suggest they floated freely for a time. Credit: NASA/JPL-Caltech

Two: While recent discoveries have shown that many bodies in the solar system either have subsurface oceans now, or may have in the past, Europa is one of only two places where the ocean appears to be in contact with a rocky seafloor (the other being Saturn’s moon Enceladus). This rare circumstance makes Europa one of the highest priority targets in the search for present-day life beyond Earth.

On Earth, chemical interactions between life and lifeless rock in deep oceans and within the outer crust provide the energy needed to power and sustain microbial life. For all we know, deep sea volcanoes belch essential elements into the salty waters spawned by the constant flexing and heating of the moon as it orbits Jupiter every 85 hours.


This mosaic of images includes the most detailed view of the surface of Jupiter’s moon Europa obtained by NASA’s Galileo mission. This observation was taken with the sun relatively high in the sky, so most of the brightness variations are due to color differences in the surface material rather than shadows. Ridge tops, brightened by frost, contrast with darker valleys, perhaps due to small temperature variations allow frost to accumulate in slightly colder, higher-elevation locations. Credit: NASA/JPL-Caltech

The SDT was tasked with developing a life-detection strategy, a first for a NASA mission since the Mars Viking mission era more than four decades ago. The report makes recommendations on the number and type of science instruments that would be required to confirm if signs of life are present in samples collected from the icy moon’s surface.

The team also worked closely with engineers to design a system capable of landing on a surface about which very little is known. Given that Europa has no atmosphere, the team developed a concept that could deliver its science payload to the icy surface without the benefit of technologies like a heat shield or parachutes.

This artist’s rendering shows NASA’s Europa mission spacecraft, which is being developed for a launch sometime in the 2020s. The spacecraft would orbit around Jupiter in order to perform a detailed investigation of Europa before a follow-up landing mission. The probe could look for “biosignatures” or molecular signs of life, such as the byproducts of metabolism, transported from the moon’s ocean to its surface. Credit: NASA/JPL-Caltech

The concept lander is separate from the solar-powered Europa multiple flyby mission, now in development for launch in the early 2020s. The spacecraft will arrive at Jupiter after a multi-year journey, orbiting the gas giant every two weeks for a series of 45 close flybys of Europa. The multiple flyby mission will investigate Europa’s habitability by mapping its composition, determining the characteristics of the ocean and ice shell, and increasing our understanding of its geology. The mission also will lay the foundation for a future landing by performing detailed reconnaissance using its powerful cameras.

We can’t help but be excited by the prospects of life-seeking missions to Europa. Sometimes wonderful things come in small packages.

Bob King

I'm a long-time amateur astronomer and member of the American Association of Variable Star Observers (AAVSO). My observing passions include everything from auroras to Z Cam stars. I also write a daily astronomy blog called Astro Bob. My new book, "Wonders of the Night Sky You Must See Before You Die", a bucket list of essential sky sights, will publish in April. It's currently available for pre-order at Amazon and BN.

Recent Posts

A Hopping Robot Could Explore Europa Using Locally Harvested Water

Various forms of hopping robots have crept into development for us[e in different space exploration…

8 hours ago

Resources on Mars Could Support Human Explorers

In the coming decades, multiple space agencies and private companies plan to establish outposts on…

15 hours ago

Exoplanet Could be an Enormous Version of Europa

Certain exoplanets pique scientists' interest more than others. Some of the most interesting are those…

1 day ago

The Moon Occults Spica This Weekend For North America

The ‘Great North American Occultation’ sees the Moon blot out Spica Saturday night.

1 day ago

Webb Detects the Smell of Rotten Eggs in an Exoplanet’s Atmosphere

Studying the atmospheres of exoplanets is helpful for several reasons. Sometimes, it helps in understanding…

2 days ago

Ancient People Saw a Kilonova Light up the Sky

What happens when aging white dwarf stars come together? Observers in feudal Japan in the…

3 days ago