Lightweight Disk Could Harbour Planets

Astronomers are looking for planets around other stars, but they’re also looking for the conditions where planets might be forming right now. Inside the disks of material that surround newly forming planets, they could be planets clearing paths through all the gas and dust. A team of Japanese astronomers have found the most lightweight stellar disk ever seen – a place where Earth-sized planets could be forming.

Using the powerful Subaru telescope, located atop Hawaii’s Mauna Kea, a team of astronomers from several Japanese universities have resolved a lightweight disk of material around a nearby, and relatively tiny star called FN Tau. It’s probably only 100,000 years old, and contains a mere 1/10th the mass of our own Sun.

Imaging the circumstellar disks around newly forming stars is difficult because they can be so dim. It’s harder still when the star itself is lightweight, and the disk is light too. All the disks seen to date have been around Sunlike stars. Until now, the lightest disk was still 7 times more massive than FN Tau.

In FN Tau, the astronomers report that we’re looking at the disk nearly face-on. Its radius is approximately 260 astronomical units (each AU is the distance from the Earth to the Sun). And as disks go, it’s relatively featureless, without any anomalies, rings, spirals, etc. But are there planets lurking in the disk?

Astronomers want to know what kinds of planets could form out of a disk like this. With a lightweight disk to total amount of gravity is much lower. This would make a thicker disk as you get further away from the star. Instead of the Jupiter-like planets turned up in extrasolar planet surveys so far, this environment might actually give a better chance of turning up Earth-mass planets instead.

According to their calculations, this disk should be able to form planets lighter than the Earth within 30 astronomical units of the parent star. The researchers are hoping to make followup observations with a newly commission instrument attached to the Subaru telescope. The HiCIAO will be able to resolve the detailed structure of disks and analyze the size and composition of the dust.

And these observations might help researchers know if FN Tau is a candidate for planetary formation.

Original Source: Subaru Telescope News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

5 hours ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

10 hours ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

1 day ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

1 day ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

1 day ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

1 day ago