Black Holes Churn Up Interstellar Dust

NGC 0507 galaxy. Image credit: NASA Click to enlarge
Chandra images of 56 elliptical galaxies have revealed evidence for unsuspected turmoil. As this sample gallery of X-ray (blue & white) and optical (gray & white) images shows, the shapes of the massive clouds of hot gas that produce X-ray light in these galaxies differ markedly from the distribution of stars that produce the optical light.

Except for rare cases, most violent activity in isolated elliptical galaxies was thought to have stopped long ago. Elliptical galaxies contain very little cool gas and dust, and far fewer massive young stars which explode as supernovas. Thus it was expected that the hot interstellar gas would have settled into an equilibrium shape similar to, but rounder than that of the stars.

Surprisingly, this study of elliptical galaxies shows that the distribution of hot gas has no correlation with the optical shape. A powerful source of energy must be pushing the hot gas around and stirring it up every hundred million years or so.

Although supernovas are a possible energy source, a more probable cause has been identified. The scientists detected a correlation between the shape of the hot gas clouds and the power produced at radio wavelengths by high-energy electrons. This power source can be traced back to the supermassive black hole in the galaxies’ central regions.

Repetitive explosive activity fueled by the infall of gas into the central supermassive black hole is known to occur in giant elliptical galaxies located in galaxy clusters. Scientists’ analysis of the Chandra data indicates that the same phenomena are occurring in isolated elliptical galaxies as well.

Original Source: Chandra X-Ray Observatory

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

2 hours ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

3 hours ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

5 hours ago

Astronomers Think They’ve Found Examples of the First Stars in the Universe

When the first stars in the Universe formed, the only material available was primordial hydrogen…

6 hours ago

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

24 hours ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

1 day ago