Few Planets Will Have Time to Form Complex Life

NASA Pathfinder mission exploring the surface of Mars. Image credit: NASA/JPL. Click to enlarge.
Whether life exists on other planets remains one of the great unanswered questions of science. Recent research argues that an atmosphere rich in oxygen is the most feasible source of energy for complex life to exist anywhere in the Universe, thereby limiting the number of places life may exist.

Professor David Catling at Bristol University, along with colleagues at the University of Washington and NASA, contend that significant oxygen in the air and oceans is essential for the evolution of multicellular organisms, and that on Earth the time required for oxygen levels to reach a point where animals could evolve was almost four billion years.

Since four billion years is almost half the anticipated life-time of our sun, life on other planets orbiting short-lived suns may not have had sufficient time to evolve into complex forms. This is because levels of oxygen will not have had time to develop sufficiently to support complex life, before the sun dies. Professor Catling said: “This is a major limiting factor for the evolution of life on otherwise potentially habitable planets.”

The research is published in the June 2005 issue of Astrobiology.

Professor Catling is also part of the science team for NASA’s Phoenix Lander, which recently got the go-ahead to put a long-armed lander on Mars in 2007. A robotic arm on the lander will dig a metre into the soil to examine its chemistry. “A key objective is to establish whether Mars ever had an environment conducive to more simple life”, said Professor Catling.

Professor Catling is one of the country’s first Professors of Astrobiology and has recently returned from the USA to take up a post at the University of Bristol. He took up a prestigious ‘Marie Curie Chair’, an EU-funded position designed to help reverse the brain drain, particularly to the USA, and to encourage leading academics to return to and work in Europe. These posts aim to attract world-class researchers. Professor Catling is an internationally recognised researcher in planetary sciences and atmospheric evolution.

As well as his research into the surface and climate of Mars, Professor Catling aims to produce a more quantitative understanding of how the Earth’s atmosphere originated and evolved.

He comments: “Earth’s surface is stunningly different from that of its apparently lifeless neighbours, Venus and Mars. But when our planet first formed its surface must also have been devoid of life. How the complex world around us developed from lifeless beginnings is a great challenge that involves many scientific disciplines such as geology, atmospheric science, and biology”.

Professor Catling grew up in Suffolk and received his doctorate from Oxford, but he has been working in the USA for the past decade: six years as a NASA scientist, followed by four years at the University of Washington in Seattle.

Professor Catling is now based in the Department of Earth Sciences at the University of Bristol. He said of his return to the UK: “It’s great to be back and I’m looking forward to getting started at Bristol. My research will focus on how Earth and Mars evolved over the history of the solar system to produce such startlingly different environments at their surface.”

Professor Catling will give a public lecture approximately every nine months on topics such as the question of life on Mars, or results from recent missions to Mars.

Original Source: Bristol University News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

35 mins ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

2 hours ago

Astronomers Think They’ve Found Examples of the First Stars in the Universe

When the first stars in the Universe formed, the only material available was primordial hydrogen…

4 hours ago

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

21 hours ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

22 hours ago

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

When a spacecraft arrives at its destination, it settles into an orbit for science operations.…

1 day ago