Geysers on Enceladus are Powered in Part by Saturn’s Gravity

The geyser jets of Enceladus don’t shoot out in a continuous stream, but are more like an adjustable garden hose nozzle, says Cassini scientist Matt Hedman, author of a new paper about the inner workings of this fascinating tiger-striped moon. Observations from Cassini has found that the bright plume emanating from Enceladus’ south pole varies predictably. The fluctuating factor appears to be how far or close Enceladus is to its home planet, Saturn.

Scientists have hypothesized that the intensity of the jets likely varied over time, but until now had not been able to show they changed in a recognizable pattern. Hedman and colleagues were able to see the changes by examining infrared data of the plume as a whole, obtained by Cassini’s visual and infrared mapping spectrometer (VIMS), and looking at data gathered since 2004 when Cassini entered Saturn’s orbit. In 2005, the jets that form the plumes were discovered.

“The way the jets react so responsively to changing stresses on Enceladus suggests they have their origins in a large body of liquid water,” said Christophe Sotin, a co-author and Cassini team member. “Liquid water was key to the development of life on Earth, so these discoveries whet the appetite to know whether life exists everywhere water is present.”

This set of images from NASA’s Cassini mission shows how the gravitational pull of Saturn affects the amount of spray coming from jets at the active moon Enceladus. Enceladus has the most spray when it is farthest away from Saturn in its orbit (inset image on the left) and the least spray when it is closest to Saturn (inset image on the right). Credit:
NASA/JPL-Caltech/University of Arizona/Cornell/SSI.

The scientists say this new finding adds to evidence that a liquid water reservoir or ocean lurks under the icy surface of the moon. This is the first clear observation the bright plume emanating from Enceladus’ south pole varies predictably. The findings were published in a scientific paper in this week’s edition of Nature.

The VIMS instrument, which enables the analysis of a wide range of data including the hydrocarbon composition of the surface of another Saturnian moon, Titan, and the seismological signs of Saturn’s vibrations in its rings, collected more than 200 images of the Enceladus plume from 2005 to 2012.

These data show the plume was dimmest when the moon was at the closest point in its orbit to Saturn. The plume gradually brightened until Enceladus was at the most distant point, where it was three to four times brighter than the dimmest detection. This is comparable to moving from a dim hallway into a brightly lit office.

Adding the brightness data to previous models of how Saturn squeezes Enceladus, the scientists deduced the stronger gravitational squeeze near the planet reduces the opening of the tiger stripes and the amount of material spraying out. They think the relaxing of Saturn’s gravity farther away from planet allows the tiger stripes to be more open and for the spray to escape in larger quantities.

“Cassini’s time at Saturn has shown us how active and kaleidoscopic this planet, its rings and its moons are,” said Linda Spilker, Cassini project scientist at JPL. “We’ve come a long way from the placid-looking Saturn that Galileo first spied through his telescope. We hope to learn more about the forces at work here as a microcosm for how our Solar System formed.”

Enceladus has likely been subject to other gravitational forces over time as well. Previous studies have shown that over hundreds of millions of years, an existing gravitational interaction between Enceladus and another moon, Dione, has caused the orbit of Enceladus to grow increasingly more elongated, or eccentric.

In turn, this produced much more tidal stress in the past and scientists think that contributed to the wide-scale fracturing and friction within Enceladus’ icy crust. The friction leads to melting of internal ice and produces an ocean and eruptions of water and organics on the surface.

Source: NASA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

10 hours ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

1 day ago

See the Southern Ring Nebula in 3D

Planetary nebula are some of nature's most stunning visual displays. The name is confusing since…

1 day ago

Hubble Has Accidentally Discovered Over a Thousand Asteroids

The venerable Hubble Space Telescope is like a gift that keeps on giving. Not only…

1 day ago

NASA Restores Communications with Voyager 1

The venerable Voyager 1 spacecraft is finally phoning home again. This is much to the…

2 days ago

Will We Know if TRAPPIST-1e has Life?

The search for extrasolar planets is currently undergoing a seismic shift. With the deployment of…

2 days ago