Categories: Astronomy

Milky Way’s Black Hole Was Active Recently

The centre of our galaxy has been known for years to host a black hole, a ‘super-massive’ yet very quiet one. New observations with Integral, ESA’s gamma-ray observatory, have now revealed that 350 years ago the black hole was much more active, releasing a million times more energy than at present. Scientists expect that it will become active again in the future.

Most galaxies harbour a super-massive black hole in their centre, weighing a million or even a thousand million times more than our Sun.

Our galaxy too, the Milky Way, hosts a super-massive black hole at its centre. Astronomers call it Sgr A* (pronounced ‘Sagittarius A star’) from its position in the southern constellation Sagittarius, ‘the archer’.

In spite of its enormous mass of more than a million suns, Sgr A* appears today as a quiet and harmless black hole. However, a new investigation with ESA’s gamma-ray observatory Integral has revealed that in the past Sgr A* has been much more active. Data clearly show that it interacted violently with its surroundings, releasing almost a million times as much energy than it does today.

This result has been obtained by a international team of scientists led by Dr Mikhail Revnivtsev (Space Research Institute, Moscow, Russia, and Max Planck Institute for Astrophysics, Garching, Germany). As Revnivtsev explains, “About 350 years ago, the region around Sgr A* was literally swamped in a tide of gamma rays.”

This gamma-ray radiation is a direct consequence of Sgr A*’s past activity, in which gas and matter trapped by the hole’s gravity are crushed and heated until they radiate X-rays and gamma rays, just before disappearing below the ‘event horizon’ – the point of no return from which even light cannot escape.

The team were able to unveil the history of Sgr A* thanks to a cloud of molecular hydrogen gas, called Sgr B2 and located about 350 light-years away from it, which acts as a living record of the hectic black hole’s past.

Because of its distance from the black hole, Sgr B2 is only now being exposed to the gamma rays emitted by Sgr A* 350 years ago, during one of its ‘high’ states. This powerful radiation is absorbed and then re-emitted by the gas in Sgr B2, but this process leaves behind an unmistakable signature.

“We are now seeing an echo from a sort of natural mirror near the galactic centre – the giant cloud Sgr B2 simply reflects gamma rays emitted by Sgr A* in the past,” says Revnivtsev. The flash was so powerful that the cloud became fluorescent in the X-rays and was even seen with X-ray telescopes before Integral. However, by showing how high-energy radiation is reflected and reprocessed by the cloud, Integral allowed scientists to reconstruct for the first time the hectic past of Sgr A*.

The high state or ‘activity’ of black holes is closely linked to the way in which they grow in size. Super-massive black holes are not born so big but, thanks to their tremendous gravitational pull, they grow over time by sucking up the gas and matter around them. When the matter is finally swallowed, a burst of X-rays and gamma rays results. The more voracious a black hole, the stronger the radiation that erupts from it.

The new Integral discovery solves the mystery of the emission from super-massive but weak black holes, such as Sgr A*. Scientists already suspected that such weak black holes should be numerous in the Universe, but they were unable to tell how much energy and of which type they emit. “Just a few years ago we could only imagine a result like this,” Revnivtsev says. “But thanks to Integral, we now know it!”

As for the duration of the latest high state of Sgr A*, 350 years ago, Revnivtsev and his team have evidence that it must have lasted at least ten years and probably much longer. The team also expect that Sgr A* will become bright again in the foreseeable future. Detecting the next burst would provide much needed information about the duty cycle of super-massive black holes.

Original Source: ESA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Second Generation Starlinks are 32 Times Brighter in Radio Wavelengths

Global internet access does seem like a worthy enterprise yet the rise of satellite megaconstellations…

2 hours ago

There’s Water All Over the Moon

When you look at the Moon, you don't see any water on its surface. That…

4 hours ago

Io’s Volcanoes are Windows into its Hot Interior

NASA's Juno spacecraft was sent to Jupiter to study the gas giant. But its mission…

6 hours ago

Could Stars Hotter Than the Sun Still Support Life?

Astronomers have several classifications for stars: the Sun is a G-type star. As you go…

10 hours ago

Slime Mold Can Teach Us About the Cosmic Web

Computers truly are wonderful things and powerful but only if they are programmed by a…

1 day ago

Plants Would Still Grow Well Under Alien Skies

Photosynthesis changed Earth in powerful ways. When photosynthetic organisms appeared, it led to the Great…

1 day ago