Big Asteroid 2004 BL86 Buzzes Earth on January 26: How to See it in Your Telescope

Artist view of an asteroid passing Earth. Credit: ESA/P.Carril

A lot of asteroids pass near Earth every year. Many are the size of a house, make close flybys and zoom out of the headlines. 2004 BL86 is a bit different. On Monday evening January 26th, it will become the largest asteroid to pass closest to Earth until 2027 when 1999 AN10 will approach within one lunar distance.

Big is good. 2004 BL86 checks in at 2,230 feet (680-m) wide or nearly half a mile. Add up its significant size and relatively close approach – 745,000 miles (1.2 million km) – and something wonderful happens. This newsy space rock is expected to reach magnitude +9.0, bright enough to see in a 3-inch telescope or even large binoculars.

This graphic depicts the passage of asteroid 2004 BL86, which will come no closer than about three times the distance from Earth to the moon on Jan. 26, 2015. Due to its orbit around the sun, the asteroid is currently only visible by astronomers with large telescopes who are located in the southern hemisphere. But by Jan. 26, the space rock's changing position will make it visible to those in the northern hemisphere. Click to see an animation. Credit: NASA/JPL-Caltech
This graphic depicts the passage of asteroid 2004 BL86, which will safely pass by the Earth on January 26th. Closest approach occurs around 10 a.m (CST) that day. The asteroid is currently only visible by astronomers with large telescopes who are located in the southern hemisphere. But by Jan. 26, the space rock’s changing position will make it visible to those in the northern hemisphere. Click to see an animation. Credit: NASA/JPL-Caltech

This is a rare opportunity then to see an Earth-approaching asteroid so easily. All you need is a good map as 2004 BL86 will be zipping along at two arc seconds per second or two degrees (four Moon diameters) per hour. That means you’ll see it move in real time like a slow satellite inching its way across the sky. Cool!

As you can see from its name, 2004 BL86 was discovered 11 years ago in 2004 by the Lincoln Near-Earth Asteroid Research (LINEAR), an MIT Lincoln Laboratory program to track near-Earth objects  funded by the U.S. Air Force and NASA. As of September 15, 2011, the search has swept up 2,423 new asteroids and 279 new comets.

Map showing the hourly progress of 2004 BL86 Monday evening January 26th as it treks across Cancer the Crab not far from Jupiter. Stars are shown to magnitude +9. The number at the tick marks show the time (CST) each hour starting at 6 p.m., then 7 p.m., 8 p.m. and so on. Click for a larger version. Created with Chris Marriott's SkyMap program
Map showing the hourly progress of 2004 BL86 Monday evening January 26th as it treks across Cancer the Crab not far from Jupiter. Stars are shown to magnitude +9. Numbers at the tick marks show the time (CST) each hour starting at 6 p.m., then 7 p.m., 8 p.m. and so on. Click for a larger version. Created with Chris Marriott’s SkyMap program

All asteroids with well-known orbits receive a number. The first asteroid, 1 Ceres, was discovered in 1801. The 4,150th asteroid, 4150 Starr and named for the Beatles’ Ringo Starr, was found in 1984. 2004 BL86 will likely be the highest-numbered asteroid any of us will ever see. How does 357,439 sound to you?

Some observers prefer a black on white map for tracking asteroids and deep sky objects. Click to view a larger version. Created with Chris Marriott's SkyMap program
Some observers prefer a black on white map for tracking asteroids and deep sky objects. Click to view a larger version. Created with Chris Marriott’s SkyMap program

Observers in the Americas, Europe and Africa will have the best seats for viewing the asteroid, which will shine brightest between 7 p.m. and midnight CST from a comfortably high perch in Cancer the Crab not far from Jupiter. The half-moon will also be out but over in the western sky, so shouldn’t get in the way of seeing our speedy celeb.

Not only will 2004 BL86 pass near a few fairly bright stars but the Beehive Cluster (M44) will temporarily gain a new member between 11 p.m. and midnight as the asteroid buzzes across the well-known star cluster.

“Monday, January 26 will be the closest asteroid 2004 BL86 will get to Earth for at least the next 200 years,” said Don Yeomans, who’s retiring as manager of NASA’s Near Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, California, after 16 years in the position.

More detailed map showing the hourly position of the asteroid through central Cancer. Stars plotted to magnitude +9.5. Created with Chris Marriott's SkyMap software
More detailed map showing the hourly position of the asteroid through central Cancer. Stars plotted to magnitude +9.5. Click to get a larger version. Created with Chris Marriott’s SkyMap software

To learn more about the space rock and acquire close-ups of its surface, NASA’s Deep Space Network antenna at Goldstone, California, and the Arecibo Observatory in Puerto Rico will attempt to ping the asteroid with microwaves to create radar-generated images of the asteroid during the days surrounding its closest approach to Earth.

“When we get our radar data back the day after the flyby, we will have the first detailed images,” said radar astronomer Lance Benner of JPL, principal investigator for the Goldstone radar observations of the asteroid. “At present, we know almost nothing about the asteroid, so there are bound to be surprises.”

NASA's Deep Space Network will be watching during 2004 BL86's flyby Monday Jan. 26. Credit: NASA
NASA’s Deep Space Network will be watching during 2004 BL86’s flyby Monday Jan. 26. Credit: NASA

While 2004 BL86 will be brightest Monday night, that’s not the only time amateur astronomers might see it. It comes into view for southern hemisphere observers around magnitude +13 on Jan. 24 and leaves the scene at a similar brightness high in the northeastern sky in the northern hemisphere on the 29th. If you use a star-charting program like Starry Night, Guide, MegaStar and others, you can get updated orbital element packages HERE.  Just select your program and download the Observable Unusual Minor Planets file. Open it in your software and create maps for the entire apparition.

One last observing tip before you go your own way. Close asteroids will sometimes be a little bit off a particular track depending on your location. Not much but enough that I recommend you scan not just the single spot where you expect to see it but also nearby in the field of view. If you see a “star” on the move – that’s it.

As always, Dr. Gianluca Masi, Italian astrophysicist, will share his live coverage of the event beginning at 1:30 p.m. (19:30 UT) Jan. 26th.

Let us know if you see our not-so-little cosmic friend. Good luck!

We’ve Found 10,000 Near-Earth Objects. How To Step Up The Search?

Asteroid 2013 MZ5 as seen by the University of Hawaii's PanSTARR-1 telescope. Credit: PS-1/UH

That pale white dot up there? No. 10,000 in a list of near-Earth objects. This rock, 2013 MZ5, was discovered June 18. It is 1,000 feet (300 meters) across and will not come anywhere near to threatening Earth, NASA assures us.

But what else is out there? The agency still hasn’t found every asteroid or comet that could come by Earth. To be sure, however, it’s really trying. But is there more NASA and other agencies can do to search? Tell us in the comments.

A bit of history: the first of these objects was discovered in 1898, but in recent decades we’ve been more systematic about finding them. This means we’ve been picking up the pace on discoveries.

Congress asked NASA in 2005 to find and catalog 90 per cent of NEOs that are larger than 500 feet (140 meters) in size, about enough to level a city. The agency says it has also found most of the very largest NEOs, those that are at least six-tenths of a mile (1 kilometer) across (and none so far discovered are a threat.)

That’s not to say smaller pieces wouldn’t do damage. Remember that Russian meteor this year that blew out windows and caused injuries? It probably was only 50 feet (15 meters) across.

The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru
The two main smoke trails left by the Russian meteorite as it passed over the city of Chelyabinsk. Credit: AP Photo/Chelyabinsk.ru

Still, NASA says once it achieves its latest goal (which it is supposed to be by 2020), “the risk of an unwarned future Earth impact will be reduced to a level of only one per cent when compared to pre-survey risk levels. This reduces the risk to human populations, because once an NEO threat is known well in advance, the object could be deflected with current space technologies.”

The major surveys for NEOs in the United States are the University of Arizona’s Catalina Sky Survey, the University of Hawaii’s Pan-STARRS survey and the Lincoln Near-Earth Asteroid Research (LINEAR) survey between the Massachusetts Institute of Technology, the Air Force and NASA. Worldwide, the current discovery rate is 1,000 per year.

In May, the European Space Agency also opened a new “NEO Coordination Centre” intended to be the one-stop shop for asteroid warnings in Europe (and worldwide, of course.) More details here.

EDIT: And NASA also recently issued an Asteroid Grand Challenge to private industry to seek solutions to find these space rocks. Check out more information here.

What more can be done to find and track threatening space rocks? Let us know below.

Credit: NASA

Say Hello to Asteroid 2007 PA8

Radar images of asteroid 2007 PA8 acquired on October 28, 29 and 30. (NASA/JPL-Caltech/Gemini)

Take a good look at asteroid 2007 PA8 — over the past week it was making its closest pass of Earth for the next 200 years… and NASA’s 230-foot (70-meter) -wide Deep Space Network antenna at Goldstone, California snapped its picture as it went by.

All right, maybe no “pictures” were “snapped”… 2007 PA8 is a small, dark body that only came within four million miles (6.5 million kilometers) today, Nov. 5 (0.043 AU, or 17 times the distance from Earth to the Moon). But the radar capabilities of the Deep Space Network antenna in California’s Mojave Desert can bounce radar off even the darkest asteroids, obtaining data that can be used to create a detailed portrait.

In the image above, a composite of radar data acquired on October 28, 29 and 30, we can see the irregular shape of 2007 PA8 as it rotates slowly — only once every 3-4 days. The perspective is looking “down” at the 1-mile (1.6-km) -wide asteroid’s north pole, showing ridges and perhaps even some craters.

Although classified as a Potentially Hazardous Asteroid (PHA) by the IAU’s Minor Planet Center the trajectory of 2007 PA8 is well understood. It is not expected to pose any impact threat to Earth in the near or foreseeable future.

2007 PA8 was discovered by LINEAR on August 9, 2007.

Read more about asteroid radar imaging here, and find out more about asteroids at JPL’s Asteroid Watch site here.

Get more information on the known properties of 2007 PA8 here.

Source: NASA Solar System Exploration. Image credits: NASA/JPL-Caltech/Gemini