≡ Menu

Why Do Galaxies Have Arms?

Spiral galaxies get their name because of their beautiful spiral shape and iconic arms. But why do galaxies have these spiral shapes, and what causes the arms?

Galaxies are some of the most beautiful and inspiring structures in the Universe. As you know, they aren’t solid disks, they’re a gigantic spill of individual stars webbed together by gravity. There are a few rough fundamental shapes that a galaxy can have, and the bulk of these are some variation of a spiral. Each one with twisting arms of stars reaching tens of thousands of light years in every direction along a plane, out from a galactic core.

This Hubble image reveals the gigantic Pinwheel Galaxy (M101), one of the best known examples of "grand design spirals," and its supergiant star-forming regions in unprecedented detail. Astronomers have searched galaxies like this in a hunt for the progenitors of Type Ia supernovae, but their search has turned up mostly empty-handed. Credit: NASA/ESA

This Hubble image reveals the gigantic Pinwheel Galaxy (M101), one of the best known examples of “grand design spirals”. Credit: NASA/ESA

So what gives them this characteristic spiral shape? Earliest galaxies didn’t have clearly defined spiral arms. They were either two-armed or, had thick irregular chaotic woolly arms with star forming clumps. After 3.6 billion years, however, the chaos had settled down into the shapes we see today. But it took until the Universe was 8 billion years old for these modern multi-armed spirals, like the Milky Way or Andromeda to appear.

So where did they come from? These arms are in fact density waves passing through the galaxy, with stars moving in and out of the waves. The arms themselves aren’t permanent structures made of the same clumps of stars.

Imagine driving down a highway and people are slowing down to gape slack-jawed a crashed alien saucer. Cars will slow down as they reach the saucer and form a clump, and then the car in the lead of the clump will accelerate and proceed down the highway as other cars progress through the clump to take their place.

This is a great analogy for movement in a galaxy. As a density wave approaches, stars accelerate towards it. Then they slow down as they move away from it. Just like a comet falling into the gravity well of the Sun. And when the density wave moves through an area, it kicks off an era of star formation. So the material of the galaxy is being constantly stirred and new stars are born as a density wave makes its way through the galaxy.

Six spectacular spiral galaxies are seen in a clear new light in images from ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile. Credit: ESO

Six spectacular spiral galaxies are seen in a clear new light in images from ESO’s Very Large Telescope (VLT) at the Paranal Observatory in Chile. Credit: ESO

When you picture this, keep in mind that stars closer to the core of the galaxy orbit faster than the spiral arm, and the stars further out go more slowly. Our galaxy, the Milky Way takes about 240 million years to complete a full rotation. But we pass through a major spiral arm every 100 million years or so, remaining in the higher density region for about 10 million years. Astronomers have only recently figured out why these arms exist in the first place.

Originally, they suspected it might be like a garden sprinkler, with material fountaining out from the center of the galaxy, or channeled by magnetic fields. They also thought that the arms might be transient features. Appearing and disappearing over time. But new evidence and simulations show they’re long lasting, they believe the arms themselves form as a result of giant molecular clouds of hydrogen. These clouds initiate the arms and keep the shape sustained over billions of years.

What do you think? What’s your favorite spiral galaxy? Tell us in the comments below.

About 

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay.

Comments on this entry are closed.

  • Aqua4U April 3, 2014, 2:20 PM

    You stated: “When you picture this, keep in mind that stars closer to the core of the galaxy orbit faster than the spiral arm, and the stars further out go more slowly.” Whereas in observations of Spiral Galaxies, the outer stars are seen to be rotating around their central cores almost as fast as the ones in the center. This in fact, is central (!) to the argument supporting the theory of Dark Matter. So… which is it then? Can you elucidate a bit more clearly on this?

hide