Young Stars Forming Near Galactic Black Hole

stars-near-black-hole.jpg

[/caption]

Just as young children need safe, nurturing environments to develop and grow, young stars, too need just the right environment to get their start in life. Or do they? At the center of our galaxy is a 4 million solar-mass black hole. If molecular clouds that form stellar nurseries were nearby, they should be ripped apart by powerful, black-hole-induced gravitational tides. But yet, astronomers have found two young protostars located just a few light-years from the galactic center. Using the Very Large Array of radio telescopes, astronomers from the Harvard-Smithsonian Center for Astrophysics and the Max Planck Institute for Radio Astronomy made this discovery, showing that stars indeed can form close to a black hole. "We literally caught these stars in the act of forming," said Smithsonian astronomer Elizabeth Humphreys, who presented the finding today at a meeting of the American Astronomical Society in Long Beach, California.

It's difficult to study the mysterious region near the Milky Way's center. Visible light can't penetrate the dominant gas and dust, so astronomers use other wavelengths like infrared and radio to penetrate the dust more easily.

Humphreys and her colleagues searched for water masers—radio signals that serve as signposts for protostars still embedded in their birth cocoons. They found two protostars located seven and 10 light-years from the galactic center. Combined with one previously identified protostar, the three examples show that star formation is taking place near the Milky Way's core.

Their finding suggests that molecular gas at the center of our galaxy must be denser than previously believed. A higher density would make it easier for a molecular cloud's self-gravity to overcome tides from the black hole, allowing it to not only hold together but also collapse and form new stars.

The discovery of these protostars corroborates recent

theoretical work

, in which a supercomputer simulation produced star formation within a few light-years of the Milky Way's central black hole.

"We don't understand the environment at the galactic center very well yet," Humphreys said. "By combining observational studies like ours with theoretical work, we hope to get a better handle on what's happening at our galaxy's core. Then, we can extrapolate to more distant galaxies."

Source:

Harvard-Smithsonian Center For Astrophysics

Nancy Atkinson

Nancy Atkinson

Nancy Atkinson is a space journalist and author with a passion for telling the stories of people involved in space exploration and astronomy. She is currently retired from daily writing, but worked at Universe Today for 20 years as a writer and editor. She also contributed articles to The Planetary Society, Ad Astra (National Space Society), New Scientist and many other online outlets.

Her 2019 book, "Eight Years to the Moon: The History of the Apollo Missions,” shares the untold stories of engineers and scientists who worked behind the scenes to make the Apollo program so successful, despite the daunting odds against it. Her first book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos” (2016) tells the stories of 37 scientists and engineers that work on several current NASA robotic missions to explore the solar system and beyond.

Nancy is also a NASA/JPL Solar System Ambassador, and through this program, she has the opportunity to share her passion of space and astronomy with children and adults through presentations and programs. Nancy's personal website is nancyatkinson.com