Strange Terraces on Mars are a Clear Signal of Sedimentary Rock

Strange Terraces on Mars are a Clear Signal of Sedimentary Rock

If we’ve learned anything about Mars the past 2-3 decades from the various rovers, landers and orbiters we’ve sent to the Red Planet, it’s that the planet’s geologic history is much more complicated and diverse than what we thought.

This picture from the HiRISE (High Resolution Imaging Science Experiment) camera on the Mars Reconnaissance Orbiter shows fractured sedimentary rock inside a crater called Danielson. Sedimentary rock is a sure sign that this planet was active in the past. The fracturing, layering and terrace-like structures suggests a long-term watery history in this region.

Studying sedimentary rocks up close is enticing because each of the layers contains a record or a snapshot of the environment on Mars through time.

Sedimentary rock in Danielson Crater on Mars. Credit: NASA/JPL/UArizona.

Before our in-situ observations of the planet, Mars was thought to be principally a volcanic planet, where the surface features were due to eruptions of lavas and volcanic deposits. But even from some of the first orbiters, scientists could see networks of large outflow channels and the transport of materials to create sedimentary landscapes in the plains of Mars.

Because sedimentary rocks are formed on or near the surface of a planet -- in contrast to volcanic rocks, which are formed deep within a planet – this changed our perceptions of Mars’ past.

Now, with surface explorations of rovers like Curiosity and Perseverance, our new view of Mars is that it had a rich history of interactions between water and the surface. Surface features show weathering and movement due to water transport.

“Surprisingly thick accumulations of stratified rocks extend back into the Noachian Era—the oldest of which were likely formed over 4 billion years ago, making these rocks much older than any sedimentary rocks preserved on Earth,” said John Grotzinger, Project Scientists for the Curiosity rover, in a book he wrote on the geologic history of Mars.

NASA's Perseverance rover, which is searching signs of ancient life on Mars (credit: NASA/JPL-Caltech/MSSS)

HiRISE scientist and co-investigator Collin Dundas says these images from orbit show classic examples of Martian sedimentary rock, where the layers are regularly spaced, forming steps or terraces.

“It is not known with certainty how these rocks formed,” Dundas wrote on the HiRISE website, “but the regularity of the layers suggests a process that repeated many times, perhaps on annual or longer timescales. This suggests that the layers did not accumulate in a series of random events, as layers of crater ejecta might.”

The Perseverance rover is now studying the layers of sedimentary rock in Jezero crater on Mars. It’s investigations should provide more insights as to why the climate of Mars changed dramatically in the planet’s geologic history and whether or not life ever existed on the Red Planet.

MRO has been orbiting Mars since 2006, and you can see all of the amazing HiRISE images taken over the years on the team's website or on their Flickr page.

Nancy Atkinson

Nancy Atkinson

Nancy Atkinson is a space journalist and author with a passion for telling the stories of people involved in space exploration and astronomy. She is currently retired from daily writing, but worked at Universe Today for 20 years as a writer and editor. She also contributed articles to The Planetary Society, Ad Astra (National Space Society), New Scientist and many other online outlets.

Her 2019 book, "Eight Years to the Moon: The History of the Apollo Missions,” shares the untold stories of engineers and scientists who worked behind the scenes to make the Apollo program so successful, despite the daunting odds against it. Her first book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos” (2016) tells the stories of 37 scientists and engineers that work on several current NASA robotic missions to explore the solar system and beyond.

Nancy is also a NASA/JPL Solar System Ambassador, and through this program, she has the opportunity to share her passion of space and astronomy with children and adults through presentations and programs. Nancy's personal website is nancyatkinson.com