No Life Possible at Edges of the Pinwheel Galaxy

spitzer-messier-101.jpg

[/caption] Another beautiful image from the Spitzer Space Telescope; in this case, it’s Messier 101, more commonly known as the Pinwheel Galaxy. But the pretty red highlights at the edges of the galaxy are bad news for anyone looking for evidence of life. "If you were going look for life in Messier 101, you would not want to look at its edges," said Karl Gordon of the Space Telescope Science Institute. "The organics can't survive in these regions, most likely because of high amounts of harsh radiation." The red color highlights a zone where organic molecules called polycyclic aromatic hydrocarbons (PAHs), which are present throughout most of the galaxy, suddenly disappear.

PAHs are dusty, carbon-containing molecules found in star nurseries. They're also found on Earth in barbeque pits, exhaust pipes and anywhere combustion reactions take place. Scientists believe this space dust has the potential to be converted into the stuff of life.

The Pinwheel galaxy is located about 27 million light-years away in the constellation Ursa Major. It has one of the highest known gradients of metals (elements heavier than helium) of all nearby galaxies in our universe. In other words, its concentrations of metals are highest at its center, and decline rapidly with distance from the center. This is because stars, which produce metals, are squeezed more tightly into the galaxy's central quarters.

Gordon's team also wanted to learn more about the gradient of the PAHs. Using Spitzer's Infrared Array Camera and the Infrared Spectograph to carefully analyze the spectra of the PAHs, astronomers can more precisely identify the PAH features, and even deduce information about their chemistry and temperature. The astronomers found that, like the metals, the polycyclic aromatic hydrocarbons decrease in concentration toward the outer portion of the galaxy. But, unlike the metals, these organic molecules quickly drop off and are no longer detected at the very outer rim.

"There's a threshold at the rim of this galaxy, where the organic material is getting destroyed," said Gordon.

The findings also provide a better understanding of the conditions under which the very first stars and galaxies arose. In the early universe, there were not a lot of metals or PAHs around. The outskirt of the Pinwheel galaxy therefore serves as a close-up example of what the environment might look like in a distant galaxy.

In this image, infrared light with a wavelength of 3.6 microns is colored blue; 8-micron light is green; and 24-micron light is red. All three of Spitzer instruments were used in the study: the infrared array camera, the multiband imaging photometer and the infrared spectrograph.

Original News Source:

JPL

Nancy Atkinson

Nancy Atkinson

Nancy Atkinson is a space journalist and author with a passion for telling the stories of people involved in space exploration and astronomy. She is currently retired from daily writing, but worked at Universe Today for 20 years as a writer and editor. She also contributed articles to The Planetary Society, Ad Astra (National Space Society), New Scientist and many other online outlets.

Her 2019 book, "Eight Years to the Moon: The History of the Apollo Missions,” shares the untold stories of engineers and scientists who worked behind the scenes to make the Apollo program so successful, despite the daunting odds against it. Her first book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos” (2016) tells the stories of 37 scientists and engineers that work on several current NASA robotic missions to explore the solar system and beyond.

Nancy is also a NASA/JPL Solar System Ambassador, and through this program, she has the opportunity to share her passion of space and astronomy with children and adults through presentations and programs. Nancy's personal website is nancyatkinson.com