New Radio Telescope to Help SETI Scan Unexplored Frequencies for Extraterrestrials

seti-lofar-1.jpg

Since the 1960's astronomers have been scanning the heavens, searching for radio signals beamed towards the vicinity of Earth by other intelligent beings. But so far, no ET signals have been found. However, no radio telescope has been able to search the very low frequency radio spectrum, which could possibly include "leakage" of extraterrestrial "everyday" signals that a distant civilization might emit, such as television and radio signals. But a new radio telescope called

LOFAR

(the Low Frequency Array), will have that ability. Currently being built by ASTRON, (the Netherlands Foundation for Research in Astronomy), LOFAR consists of about 25,000 small antennas that will receive signals from space, and offers the ability to search these low-frequency type of radio waves.

According to Professor Michael Garrett, General Director of ASTRON, LOFAR is well suited to SETI research. "LOFAR can extend the search for extra-terrestrial intelligence to an entirely unexplored part of the low-frequency radio spectrum, an area that is heavily used for civil and military communications here on Earth. In addition, LOFAR can survey large areas of the sky simultaneously - an important advantage if SETI signals are rare or transient in nature."

Astronomers believe of the approximately 100 thousand million stars in the galaxy, most of these have planetary systems. Some of these planets might actually be suitable for life and many scientists believe that life is probably wide-spread across the galaxy. However, technically advanced civilizations might be relatively rare or at least widely separated from each other.

Despite the huge distances between stars, the next generation of radio telescopes, such as LOFAR, begin to offer the possibility of detecting radio signals associated with extraterrestrial radio and TV transmitters.

Dan Werthimer, a SETI@home project Scientist at the University of Berkeley said, "SETI searches are still only scratching the surface, we need to use as many different telescopes, techniques and strategies as possible, in order to maximize our chances of success."

Professor Garrett thinks it is high time European scientists began to support their colleagues from the United States in this exciting area of research. "I cannot think of a more important question humanity can ask and perhaps now answer. Are we truly alone in the Universe or are there other civilizations out there waiting to be discovered? Either way, the implications are tremendous."

LOFAR will begin its scans of low frequency radio waves when the array is completed in 2009.

Original News Source: ASTRON

Nancy Atkinson

Nancy Atkinson

Nancy Atkinson is a space journalist and author with a passion for telling the stories of people involved in space exploration and astronomy. She is currently retired from daily writing, but worked at Universe Today for 20 years as a writer and editor. She also contributed articles to The Planetary Society, Ad Astra (National Space Society), New Scientist and many other online outlets.

Her 2019 book, "Eight Years to the Moon: The History of the Apollo Missions,” shares the untold stories of engineers and scientists who worked behind the scenes to make the Apollo program so successful, despite the daunting odds against it. Her first book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos” (2016) tells the stories of 37 scientists and engineers that work on several current NASA robotic missions to explore the solar system and beyond.

Nancy is also a NASA/JPL Solar System Ambassador, and through this program, she has the opportunity to share her passion of space and astronomy with children and adults through presentations and programs. Nancy's personal website is nancyatkinson.com