Description:
"The phenomenon of Be stars has been known for over a century. The fact that at least 20% of B stars have an emission spectrum supports that the definition that this phenomenon is not special but it is rather typical from a large group of objects at a certain stage of evolution. The vagueness of the concept of the Be phenomenon suggests that this definition encompasses a broad group of objects near the main sequence that includes binary systems with different rate of mass exchange. This young open cluster in the Cyg OB1 association, is also know as M29, contains a large number of luminous stars with spectral types around B0. An extreme variation of extinction is found across the young open cluster NGC 6913, extinction in the cluster center is relatively homogeneous, but very large. We observed 10 spectra for 7 B stars and one known Be star in the blue region."
"The Cygnus region is a region of recent star formation activity in the Milky Way and is rich in massive early type stars concentrated in OB associations. The presence of nebulosity and massive stars indicate that the stars have been forming till very recently and the young clusters found here are the result of the recent star formation event. Though the above fact is known, what is not known is that when this star formation process started and how it proceeded in the region. Though one assumes that all the stars in a cluster have the same age, this assumption is not valid when the candidate cluster is very young. In the case of young clusters, there is a chance for a spread in the age of the stars, depending on the duration of star formation. An estimation of this formation time-scale in the clusters formed in a star forming complex, will indicate the duration of star formation and its direction of propagation within the complex. In principle, duration of star formation is defined as the difference between the ages of the oldest and the youngest star formed in the cluster. In practice, the age of the oldest star is assumed as the age of that star which is about to turn-off from the main-sequence (MS) (turn-off age) and the age of the youngest star is the age of the youngest pre-MS star (turn-on age). The turn-off age of many clusters are known, but the turn-on age is not known for most of the clusters."
History of Observation:
"In the night of July 29 to 30, 1764, I have discovered a cluster of six or seven very small stars which are below Gamma Cygni, and which one sees with an ordinary refractor of 3 feet and a half in the form of a nebula. I have compared this cluster with the star Gamma, and I have determined its position in right ascension as 303d 54' 29", and its declination of 37d 11' 57" north."
"A neat but small cluster of stars at the root of the Swan's neck, and in the preceding branch of the Milky Way, not quite 2deg south of Gamma; and preceding 40 Cygni, a star of the 6th magnitude, by one degree just on the parallel. In the sp [south preceding, SW] portion are the two stars here estimated as double, of which A is 8, yellow; B 11, dusky. Messier discovered this in 1764; and though his description of it is very fair, his declination is very much out: worked up for my epoch it would be north 37d 26' 15". But one is only surprised that, with his confined methods and means, so much was accomplished."