Description:
"In the case of a young open cluster, low-mass stars are still in the contraction phase and their positions in the photometric diagrams are usually crowded with foreground red stars and reddened background stars. The young open cluster NGC 6531 (M21) is located in the Galactic disk near the Sagittarius star forming region. The cluster is near to the nebula NGC 6514 (the Trifid nebula), but it is known that it is not associated with any nebulosity and the interstellar reddening is low and homogeneous. Although the cluster is relatively near, and has many early B-type stars, it has not been studied in detail."
"The study of the very young open cluster NGC 6231 clearly shows the presence of a mass segregation for the most massive stars. These observations, combined with those concerning other young objects and very recent numerical simulations, strongly support the hypothesis of an initial origin for the mass segregation of the most massive stars. These results led to the conclusion that massive stars form near the center of clusters. They are strong constraints for scenarii of star and stellar cluster formation." say Raboud, "In the context of massive star formation in the center of clusters, it is worth noting that we observe numerous examples of multiple systems of O-stars in the center of very young OCs. In the case of NGC 6231, 8 stars among the 10 brightest are spectroscopic binaries with periods shorter than 6 days."
"Be stars are a class of rapidly rotating B stars with circumstellar disks that cause Balmer and other line emission. There are three possible reasons for the rapid rotation of Be stars: they may have been born as rapid rotators, spun up by binary mass transfer, or spun up during the main-sequence (MS) evolution of B stars. To test the various formation scenarios, we have conducted a photometric survey of 55 open clusters in the southern sky. We use our results to examine the age and evolutionary dependence of the Be phenomenon. We find an overall increase in the fraction of Be stars with age until 100 Myr, and Be stars are most common among the brightest, most massive B-type stars above the zero-age main sequence (ZAMS). We show that a spin-up phase at the terminal-age main sequence (TAMS) cannot produce the observed distribution of Be stars, but up to 73% of the Be stars detected may have been spun-up by binary mass transfer. Most of the remaining Be stars were likely rapid rotators at birth. Previous studies have suggested that low metallicity and high cluster density may also favor Be star formation."
History of Observation:
"In the same night I have determined the position of two clusters of stars which are close to each other, a bit above the Ecliptic, between the bow of Sagittarius and the right foot of Ophiuchus: the known star closest to these two clusters is the 11th of the constellation Sagittarius, of seventh magnitude, after the catalog of Flamsteed: the stars of these clusters are, from the eighth to the ninth magnitude, environed with nebulosities. I have determined their positions. The right ascension of the first cluster, 267d 4' 5", its declination 22d 59' 10" south. The right ascension of the second, 267d 31' 35"; its declination, 22d 31' 25" south."
"A coarse cluster of telescopic stars, in a rich gathering galaxy region, near the upper part of the Archer's bow; and about the middle is the conspicuous pair above registered, - A being 9, yellowish, and B 10, ash coloured. This was discovered by Messier in 1764, who seems to have included some bright outliers in his description, and what he mentions as nebulosity, must have been the grouping of the minute stars in view. Though this was in the power of the meridian instruments, its mean apparent place was obtained by differentiation from Mu Sagittarii, the bright star about 2 deg 1/4 to the north-east of it."
Locating Messier 21:
Messier Objects - Messier 21
Free Star Charts - M21 Open Star Cluster