Incredible View of Curiosity Rover's Landing Site

gale-crater.jpg

Here's an intriguing look at Gale Crater, the landing spot for the Mars Science Laboratory's Curiosity rover. This image was taken by the High Resolution Stereo Camera (HRSC) on the Mars Express spacecraft and it is color-coded based on variations in terrain. The lower elevation, shown in purple is the target landing area, but scientists and engineers want to get the rover as close as they can to the big mountain, Mount Sharp -- which rises 5.5 km above the crater floor -- where all the interesting geologic features are.

Orbiting spacecraft have already identified minerals and clays there that suggest water may have once filled the area, and as Curiosity slowly makes its ascent of the mountain region, it will analyze samples of these materials with its onboard laboratory in search of the building blocks of life.

The crater itself is 154 km wide, and Curiosity is aiming for a target landing ellipse that is 20 x 7 km. Initially, the rover had a target landing ellipse of 20 X 25 km, but by combining elevation data from the HRSC on Mars Express, image data from the Context Camera on NASA's Mars Reconnaissance Orbiter, and color information from Viking Orbiter imagery, the target ellipse was adjusted to a smaller area.

Mars Express will be an integral part of Curiosity's landing, providing tracking and communication data for the spacecraft.

The highlight of ESA's support for NASA's Curiosity landing happens at 06:29 on Monday, 6 August, when the Mars Express Lander Communication (MELACOM) system is switched on.

Recording of the radio signals transmitted by the Mars Science Laboratory (MSL) is planned to begin at 07:09 and end at 07:37 (all times shown as ground event time in CEST).

ESA's ground tracking station in New Norcia, Australia, will also listen and record signals from the NASA mission at the same time.

At 08:15, Mars Express will contact Earth via ESA's 35 m deep space station at New Norcia, and begin transmitting the recorded information, which should take about 11 minutes to download; signals will take nearly 14 minutes to cover the 248 million km distance to Earth.

The transfer will be complete by about 08:26; the data will be transferred in real time to ESOC, and made immediately available to NASA's MSL mission team at the Jet Propulsion Lab in California.

Here's a graph from ESA of the timeline:

source:

ESA

Nancy Atkinson

Nancy Atkinson

Nancy Atkinson is a space journalist and author with a passion for telling the stories of people involved in space exploration and astronomy. She is currently retired from daily writing, but worked at Universe Today for 20 years as a writer and editor. She also contributed articles to The Planetary Society, Ad Astra (National Space Society), New Scientist and many other online outlets.

Her 2019 book, "Eight Years to the Moon: The History of the Apollo Missions,” shares the untold stories of engineers and scientists who worked behind the scenes to make the Apollo program so successful, despite the daunting odds against it. Her first book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos” (2016) tells the stories of 37 scientists and engineers that work on several current NASA robotic missions to explore the solar system and beyond.

Nancy is also a NASA/JPL Solar System Ambassador, and through this program, she has the opportunity to share her passion of space and astronomy with children and adults through presentations and programs. Nancy's personal website is nancyatkinson.com