Astronomers Link Telescopes to Zoom In On Milky Way's Black Hole

black-hole-2.jpg

[/caption]

An international team of astronomers has obtained the closest views ever of what is believed to be a super-massive black hole at the center of the Milky Way galaxy. The astronomers linked together radio dishes in Hawaii, Arizona and California to create a virtual telescope more than 2,800 miles across that is capable of seeing details more than 1,000 times finer than the Hubble Space Telescope. The target of the observations was the source known as Sagittarius A* ("A-star"), long thought to mark the position of a black hole whose mass is 4 million times that of the sun.

Using a technique called Very Long Baseline Interferometry (VLBI), the astronomers studied the radio waves coming from Sagittarius A*. In VLBI, signals from multiple

astronomy telescopes

are combined to create the equivalent of a single giant telescope, as large as the separation between the facilities. As a result, VLBI yields exquisitely sharp resolution.

They detected structure at a tiny angular scale of 37 micro-arcseconds - the equivalent of a baseball seen on the surface of the moon, 240,000 miles distant. These observations are among the highest resolution ever done in astronomy.

"This technique gives us an unmatched view of the region near the Milky Way's central black hole," said Sheperd Doeleman of MIT, first author of the study that will be published in the Sept. 4 issue of the journal Nature.

[caption id="attachment_17612" align="alignnone" width="249" caption="Computer animation illustrating a spinning black hole. Credit: NASA"]

[/caption]

Though Sagittarius A* was discovered three decades ago, the new observations for the first time have an angular resolution, or ability to observe small details, that is matched to the size of the black hole "event horizon" â€" the region inside of which nothing, including light, can ever escape.

With three telescopes, the astronomers could only vaguely determine the shape of the emitting region. Future investigations will help answer the question of what, precisely, they are seeing: a glowing corona around the black hole, an orbiting "hot spot," or a jet of material. Nevertheless, their result represents the first time that observations have gotten down to the scale of the black hole itself, which has a "

Schwarzschild radius

" of 10 million miles.

The concept of black holes, objects so dense that their gravitational pull prevents anything including light itself from ever escaping their grasp, has long been hypothesized, but their existence has not yet been proved conclusively. Astronomers study black holes by detecting the light emitted by matter that heats up as it is pulled closer to the event horizon. By measuring the size of this glowing region at the Milky Way center, the new observations have revealed the highest density yet for the concentration of matter at the center of our galaxy, which "is important new evidence supporting the existence of black holes," said Doeleman.

"This result, which is remarkable in and of itself, also confirms that the 1.3-mm VLBI technique has enormous potential, both for probing the galactic center and for studying other phenomena at similar small scales," said co-author Jonathan Weintroub.

The team plans to expand their work by developing novel instrumentation to make more sensitive 1.3-mm observations possible. They also hope to develop additional observing stations, which would provide additional baselines (pairings of two telescope facilities at different locations) to enhance the detail in the picture. Future plans also include observations at shorter, 0.85-mm wavelengths; however, such work will be even more challenging for many reasons, including stretching the capabilities of the instrumentation, and the requirement for a coincidence of excellent weather conditions at all sites.

Source:

Harvard Smithsonian press release

Nancy Atkinson

Nancy Atkinson

Nancy Atkinson is a space journalist and author with a passion for telling the stories of people involved in space exploration and astronomy. She is currently retired from daily writing, but worked at Universe Today for 20 years as a writer and editor. She also contributed articles to The Planetary Society, Ad Astra (National Space Society), New Scientist and many other online outlets.

Her 2019 book, "Eight Years to the Moon: The History of the Apollo Missions,” shares the untold stories of engineers and scientists who worked behind the scenes to make the Apollo program so successful, despite the daunting odds against it. Her first book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos” (2016) tells the stories of 37 scientists and engineers that work on several current NASA robotic missions to explore the solar system and beyond.

Nancy is also a NASA/JPL Solar System Ambassador, and through this program, she has the opportunity to share her passion of space and astronomy with children and adults through presentations and programs. Nancy's personal website is nancyatkinson.com