Exoplanets

Hot Stars Blast Away at gas Giants Until Only Their Rocky Cores Remain

In our solar system, we have two types of planets. Small, warm, rocky worlds populate the inner region, while the outer region has cold gas giants. Intuitively this makes a lot of sense. When the solar system was forming, the Sun’s light and heat must have pushed much of the gas toward the outer system, leaving heavier dust and rock to form the inner worlds. Giants could only grow in the cold, dark outer solar system. But we now know our solar system is more the exception than the rule. Many star systems have large gas planets that orbit close to their stars. These hot Jupiters and hot Neptunes are unlike anything in our solar system, and astronomers are keen to understand what they may be like.

One way to study warm gas planets is by looking at the distribution of known exoplanets. Currently, close orbiting planets are easier to detect than more distant ones, so we have plenty of examples of gas planets that closely orbit their stars. But as a recent study shows, there’s an interesting pattern when it comes to Neptune-sized worlds.

Few Neptune-sized worlds are found close to A-type stars. Credit: Steven Giacalone, using NASA data

Close orbiting warm Neptunes can be found around several stars, including A-type stars, which emit powerful ultraviolet and x-ray light. But these worlds don’t have orbits shorter than about 3 days. In contrast, we know of several hot Jupiters with very short orbital periods. So why is that?

To answer that question, the team looked at how ultraviolet light can interact with the thick atmosphere of a gas planet. A-type stars have fairly short lifetimes of only about a billion years. From their model, the team found that warm gas worlds more massive than about 8 Earths can hold onto their atmosphere for the lifetime of an A-type star, which is why we observe both warm Neptunes and warm Jupiters. But the team also found that “hot” planets with orbital periods of less than a few days would be stripped of their atmosphere if they are less massive than about 14 Earths. So, while larger Jupiter-like worlds have enough gravity to hold on to their atmospheres, smaller Neptune-like worlds don’t. This would explain the “hot Neptune desert,” and why we don’t see many close-orbiting Neptunes around hot stars.

If the team’s model is correct, there should be plenty of rocky worlds orbiting A-type stars. These cores of stripped Neptunes can’t be detected by current telescopes but could be seen by future generations of telescopes. The team would also like to find more hot Neptunes, so they can better understand whether these worlds form close to their star, or whether their orbits shift inward over time.

Reference: Giacalone, Stephen, et al. “HD 56414 b: A Warm Neptune Transiting an A-type Star.” The Astrophysical Journal Letters 935.1 (2022): L10.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

7 hours ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

7 hours ago

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

When a spacecraft arrives at its destination, it settles into an orbit for science operations.…

11 hours ago

Another New Molecule Discovered Forming in Space

The list of chemicals found in space is growing longer and longer. Astronomers have found…

12 hours ago

JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study…

15 hours ago

A Cold Brown Dwarf is Belching Methane Into Space

Brown dwarfs span the line between planets and stars. By definition, a star must be…

16 hours ago