Categories: Hubble

Hubble’s Accidental Asteroid Discovery

While analyzing NASA Hubble Space Telescope images of the Sagittarius dwarf irregular galaxy (SagDIG), an international team of astronomers led by Simone Marchi, Yazan Momany, and Luigi Bedin were surprised to see the trail of a faint asteroid that had drifted across the field of view during the exposures. The trail is seen as a series of 13 reddish arcs on the right in this August 2003 Advanced Camera for Surveys image.

As the Hubble telescope orbits around the Earth, and the Earth moves around the Sun, a nearby asteroid in our solar system will appear to move with respect to the vastly more distant background stars, due to an effect called parallax. It is somewhat similar to the effect you see from a moving car, in which trees by the side of the road appear to be moving much more rapidly than background objects at much larger distances. If the Hubble exposure were a continuous one, the asteroid trail would appear like a continuous wavy line. However, the exposure with Hubble’s camera was actually broken up into more than a dozen separate exposures. After each exposure, the camera’s shutter was closed while the image was transferred from the electronic detector into the camera’s computer memory; this accounts for the many interruptions in the asteroid’s trail.

Since the trajectory of the Hubble spacecraft around the Earth is known very accurately, it is possible to triangulate the distance to the asteroid in a manner similar to that used by terrestrial surveyors. It turns out to be a previously unknown asteroid, located 169 million miles from Earth at the time of observation. The distance places the new object, most likely, in the main asteroid belt, lying between the orbits of Mars and Jupiter. Based on the observed brightness of the asteroid, the astronomers estimate that it has a diameter of about 1.5 miles.

The brightest stars in the picture (easily distinguished by the spikes radiating from their images, produced by optical effects within the telescope), are foreground stars lying within our own Milky Way galaxy. Their distances from Earth are typically a few thousand light-years. The faint, bluish SagDIG stars lie at about 3.5 million light-years (1.1 Megaparsecs) from us. Lastly, background galaxies (reddish/brown extended objects with spiral arms and halos) are located even further beyond SagDIG at several tens of millions parsecs away. There is thus a vast range of distances among the objects visible in this photo, ranging from about 169 million miles for the asteroid, up to many quadrillions of miles for the faint, small galaxies.

The team reported their science findings about the asteroid in the October 2004 issue of New Astronomy.

Original Source: Hubble News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

12 mins ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

52 mins ago

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

When a spacecraft arrives at its destination, it settles into an orbit for science operations.…

4 hours ago

Another New Molecule Discovered Forming in Space

The list of chemicals found in space is growing longer and longer. Astronomers have found…

5 hours ago

JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study…

8 hours ago

A Cold Brown Dwarf is Belching Methane Into Space

Brown dwarfs span the line between planets and stars. By definition, a star must be…

10 hours ago