≡ Menu

Astrophotos: The February 2015 ‘Black’ Moon

The February 2015 new Moon over Antelope Valley, California. Credit and copyright: Gavin Heffernan.

The February 2015 new Moon over Antelope Valley, California. Credit and copyright: Gavin Heffernan.

As our David Dickinson noted in his recent article, a new term is “creeping into the popular astronomical vernacular: that of a ‘Black Moon’.” This is the New Moon version of a Blue Moon, and is either:

  1. A month missing a Full or New Moon… this can only occur in February, as the lunar synodic period from like phase to phase is 29.5 days long. This last occurred in 2014 and will next occur in 2018.
  2. The second New Moon in a month with two. This can happen in any calendar month except February.
  3. And now for the most convoluted definition: the third New Moon in an astronomical season with four.

The February 18th New Moon met the requirements expressed in rule 3. The fourth New Moon of the season falls on March 20th, just 13 hours before the northward equinox on the same date.

But no matter what the occasion, there are always astrophotographers out to grab pictures, and here are some shared with Universe Today via email and on our Flickr page.
[click to continue…]

{ 2 comments }

Learn About Venus, The Hothouse Planet Near Earth

False color radar topographical map of Venus provided by Magellan. Credit: Magellan Team/JPL/NASA

False color radar topographical map of Venus provided by Magellan. Credit: Magellan Team/JPL/NASA

Venus was once considered a twin to Earth, as it’s roughly the same size and is relatively close to our planet. But once astronomers looked at it seriously in the past half-century or so, a lot of contrasts emerged. The biggest one — Venus is actually a hothouse planet with a runaway greenhouse effect, making it inhospitable to life as we know it. Here are some more interesting facts about Venus.

[click to continue…]

{ 15 comments }

A Recipe for Returning Pluto to Full Planethood

The eight planets of the Solar System and the dwarf planet Pluto. For many astronomers and planetary scientists Pluto's status remains an open question. Redefining what is a planet could return Pluto to the fold - 9 planets and also open the door for many more. Insets from upper left, clockwise: Clyde Tombaugh, Mike Brown, Alan Stern, Gerard Kuiper.(Credit: NASA, Judy Schmidt, Björn Jónsson)

The eight planets of the Solar System and the dwarf planet Pluto. For many astronomers and planetary scientists Pluto’s status remains an open question. Redefining what is a planet could return Pluto to the fold but also open the door for many more. Insets from upper left, clockwise: Clyde Tombaugh, Mike Brown, Alan Stern, Gerard Kuiper – prominent scientists and discoverers that have led to the present definition of planet.(Credit: NASA, Judy Schmidt, Björn Jónsson)

A storm is brewing, a battle of words and a war of the worlds. The Earth is not at risk. It is mostly a civil dispute, but it has the potential to influence the path of careers. In 2014, a Harvard led debate was undertaken on the question: Is Pluto a planet. The impact of the definition of planet and everything else is far reaching – to the ends of the Universe.

It could mean a count of trillions of planets in our galaxy alone or it means leaving the planet Pluto out of the count – designation, just a dwarf planet. This is a question of how to classify non-stellar objects. What is a planet, asteroid, comet, planetoid or dwarf planet? Does our Solar System have 8 planets or some other number? Even the count of planets in our Milky Way galaxy is at stake.

[click to continue…]

{ 55 comments }

25 Years Since Voyager’s ‘Pale Blue Dot’ Images

These six narrow-angle color images were made from the first ever "portrait" of the solar system taken by Voyager 1 Valentine’s Day on Feb. 14, 1990, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic.  Venus, Earth, Jupiter, and Saturn, Uranus, Neptune are seen in these blown-up images, from left to right and top to bottom.  Credit: NASA/JPL-Caltech

These six narrow-angle color images were made from the first ever “portrait” of the solar system taken by Voyager 1 on Valentine’s Day on Feb. 14, 1990, which was more than 4 billion miles from Earth and about 32 degrees above the ecliptic. Venus, Earth, Jupiter, and Saturn, Uranus, Neptune are seen in these blown-up images, from left to right and top to bottom. Credit: NASA/JPL-Caltech

A quarter of a century has passed since NASA’s Voyager 1 spacecraft snapped the iconic image of Earth known as the “Pale Blue Dot” that shows all of humanity as merely a tiny point of light.

The outward bound Voyager 1 space probe took the ‘pale blue dot’ image of Earth 25 years ago on Valentine’s Day, on Feb. 14, 1990 when it looked back from its unique perch beyond the orbit of Neptune to capture the first ever “portrait” of the solar system from its outer realms. [click to continue…]

{ 5 comments }

War of the Worlds

The prospect of alien invasion has sent shivers down the spines of science fiction fans ever since H. G. Wells published his classic “The War of the Worlds” in 1897. Drawing on the science of his times, Wells envisioned Mars as an arid dying world, whose inhabitants coveted the lush blue Earth. Although opponents of METI seldom explicitly invoke the spectre of alien invasion, some do believe that we must take into account the possibility that extraterrestrials may mean to harm us. The illustration from Well’s novel shows a Martian fighting machine attacking the British warship HMS Thunderchild.
(credit: Henrique Alvim Correa, 1906, for the novel “The War of the Worlds”)

Should we beam messages into deep space, announcing our presence to any extraterrestrial civilizations that might be out there? Or, should we just listen? Since the beginnings of the modern Search for Extraterrestrial Intelligence (SETI), radio astronomers have, for the most part, followed the listening strategy.

In 1999, that consensus was shattered. Without consulting with other members of the community of scientists involved in SETI, a team of radio astronomers at the Evpatoria Radar Telescope in Crimea, led by Alexander Zaitsev, beamed an interstellar message called ‘Cosmic Call’ to four nearby sun-like stars. The project was funded by an American company called Team Encounter and used proceeds obtained by allowing members of the general public to submit text and images for the message in exchange for a fee.
[click to continue…]

{ 26 comments }

Why Does The Moon Look So Big Tonight?


Look at the Moon. Have you ever noticed the Moon looks so big when it’s down on the horizon, but way smaller when it’s nearly overhead? What’s going on here? Turns out, you fell for the oldest trick in the book: the Moon Illusion.
[click to continue…]

{ 1 comment }

What’s Important To Know About Planet Mercury?

Caloris in Color – An enhanced-color view of Mercury, assembled from images taken at various wavelengths by the cameras on board the MESSENGER spacecraft. The circular, orange area near the center-top of the disc is Caloris Basin. Apollodorus and Pantheon Fossae can be seen at the center-left of the basin. Credit: NASA / Johns Hopkins University Applied Physics Laboratory / Carnegie Institution of Washington

Caloris in Color – An enhanced-color view of Mercury, assembled from images taken at various wavelengths by the cameras on board the MESSENGER spacecraft. The circular, orange area near the center-top of the disc is Caloris Basin. Apollodorus and Pantheon Fossae can be seen at the center-left of the basin. Credit: NASA / Johns Hopkins University Applied Physics Laboratory / Carnegie Institution of Washington

Close by the Sun is Mercury, a practically atmosphere-like world that has a lot of craters. Until NASA’s MESSENGER spacecraft arrived there in 2008, we knew very little about the planet — only part of it had been imaged! But now that the spacecraft has been circling the planet for a few years, we know a heck of a lot more. Here is some stuff about Mercury that’s useful to know.

[click to continue…]

{ 5 comments }
At a time when modern man was emerging from the shadows, Neandertal man was nearing extinction, a binary star system passed through the outer reaches of our Solar System. (Credit: Michael Osadciw/University of Rochester)

At a time when modern man was emerging from the shadows, Neandertal man was nearing extinction, a binary star system passed through the outer reaches of our Solar System. (Credit: Michael Osadciw/University of Rochester)

Astronomers have reported the discovery of a star that passed within the outer reaches of our Solar System just 70,000 years ago, when early humans were beginning to take a foothold here on Earth. The stellar flyby was likely close enough to have influenced the orbits of comets in the outer Oort Cloud, but Neandertals and Cro Magnons – our early ancestors – were not in danger. But now astronomers are ready to look for more stars like this one.

[click to continue…]

{ 37 comments }

How do Gas and Stars Build a Galaxy?

ALMA image of Sculptor (NGC 253), a 'starburst' galaxy with a diffuse envelope of carbon monoxide gas (in red) which surrounds star-forming regions (in yellow). The ALMA data are superimposed on a Hubble image that covers part of the same region. Credit: B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ); A. Leroy; STScI/NASA, ST-ECF/ESA, CADC/NRC/CSA

ALMA image of Sculptor (NGC 253), a ‘starburst’ galaxy with a diffuse envelope of carbon monoxide gas (in red) which surrounds star-forming regions (in yellow). The ALMA data are superimposed on a Hubble image that covers part of the same region. Credit: B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ); A. Leroy; STScI/NASA, ST-ECF/ESA, CADC/NRC/CSA

When we look up at the night sky outside of the bright city, we can see a dazzling array of stars and galaxies. It is more difficult to see the clouds of gas within galaxies, however, but gas is required to form new stars and allow galaxies to grow. Although gas makes up less than 1% of the matter in the universe, “it’s the gas that drives the evolution of the galaxy, not the other way around,” says Felix “Jay” Lockman of the National Radio Astronomy Observatory (NRAO).
[click to continue…]

{ 1 comment }

Why Can’t We Design the Perfect Spacesuit?

The MIT BioSuit, a skintight spacesuit that offers improved mobility and reduced mass compared to modern gas-pressurized spacesuits. Credit: MIT.

The MIT BioSuit, a skintight spacesuit that offers improved mobility and reduced mass compared to modern gas-pressurized spacesuits. Credit: MIT.

So far, every spacesuit humans have utilized has been designed with a specific mission and purpose in mind. As of yet, there’s been no universal or “perfect” spacesuit that would fit every need. For example, the US ACES “pumpkin” suits and the Russian Sokol are only for launch and reentry and can’t be used for spacewalks. And the Apollo A7L suits were designed with hard soled boots for astronauts to walk on the Moon, while the current NASA EMU and the Russian Orlan are designed for use in space, but with soft soled booties so as not to damage the exterior of the space station.

What would constitute the perfect spacesuit that could be used for any mission? It would have to be lightweight while being impervious to rips, impacts and radiation, but also be flexible, fit multiple sizes, and be comfortable enough to be worn for long periods of time.

With those specifications in mind, is it possible to create the perfect spacesuit?
[click to continue…]

{ 3 comments }