Amazing New View of the Mt. Everest of Vesta

by Ken Kremer on October 11, 2011

Want to stay on top of all the space news? Follow @universetoday on Twitter

Oblique View of Vesta's South Polar Region - Rheasilvia
This image of the asteroid Vesta, calculated from a shape model, shows a tilted view of the topography of the south polar region. The image has a resolution of about 1,000 feet (300 meters) per pixel, and the vertical scale is 1.5 times that of the horizontal scale. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/PSI

NASA has just released an amazing new view of the mysterious south pole of Vesta that offers an oblique perspective view of the central mountain peak which is three times as high as Mt Everest. This topographic view , shown above,is completely unique to viewers from Earth and is provided courtesy of NASA’s exotic Dawn Asteroid Orbiter – newly arrived in July 2011.

The mountain peak rises about 15 miles (22 km) above the average height of the surrounding pockmarked terrain at Vesta’s south polar region – formally named Rheasilvia – and is located in the foreground, left side of the new image. A portion of the crater rim with a rather steep slope – known as a scarp – is seen at the right and may show evidence of Vestan landslides.

This oblique image derived from the on board Framing Camera was created from a shape model of the 530 km diameter asteroid. It has been flattened to remove the curvature of Vesta and has a vertical scale adjusted to 1.5 times that of the horizontal scale.

The origin of Vesta’s south polar region is hotly debated among the mission’s science team who will reveal their current theories at a briefing set for October 12 – watch for my upcoming report.

Dawn will remain in orbit at Vesta for 1 year until July 2012 and then fire up its revolutionary ion propulsion system to depart for Ceres, the largest Asteroid in the main belt between Mars and Jupiter.

Asteroid Vesta from Dawn
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read Ken’s continuing features about Dawn and Vesta starting here
Dramatic 3 D Imagery Showcases Vesta’s Pockmarked, Mountainous and Groovy Terrain
Rheasilvia – Super Mysterious South Pole Basin at Vesta
Space Spectacular — Rotation Movies of Vesta
3 D Alien Snowman Graces Vesta
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter

Andrey October 11, 2011 at 1:31 PM

Where is that snow cap?

Navneeth October 11, 2011 at 3:42 PM

Andrey,

Without smiley (the substitute for the tone of one’s voice for text), it is difficult to suggest if you’re serious of joking, but to answer you question: they haven’t any found frozen liquid anywhere on Vesta. If we did, though, it would be an amazing discovery.

Sanjay M October 11, 2011 at 7:08 PM

I agree with N, however the correct answer is that any surface ice/water would be broken down by UV rays to gas that would be lost in space. It could however contain water /ice beneath the surface.

Samuel Millar October 12, 2011 at 10:19 PM

Very cooool.

Comments on this entry are closed.

Previous post:

Next post: