Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-ray data (blue) from the Germany/U.S./UK ROSAT mission, infrared (red) from NASA’s Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, NASA/ROSAT, NASA/JPL-Caltech, and NRAO/AUI

What Are Gamma Rays

15 Sep , 2010 by


In the universe there are kinds of energy and different ways it manifests itself. One common form is radiation. Radiation is the wave energy produced by electromagnetic forces. There are different kinds and their strength can be divided into three categories. There are alpha rays, beta rays, and finally gamma rays. Essentially each example is high energy particles traveling in a straight line. However, there are limits for level. Alpha rays are the weakest and can be blocked by human skin and gamma rays are the strongest and only dense elements like lead can block them.

So what are gamma rays? Gamma rays are the strongest from of radiation. This is what makes nuclear radiation so dangerous. This high energy form of radiation can damage human tissue and cause mutations. In circumstances where gamma radiation is plentiful most life forms would be killed within a short amount of time.

Gamma rays differ from alpha and beta waves in their composition. Alpha and beta rays are composed of discrete subatomic particles. This is part of the reason why these rays are more easily deflected by less dense matter. Gamma rays are on a whole different level. They are pure energy and radiation so only the most dense kind of matter can deflect it.

Gamma rays can be found practically anywhere in the universe. The best example is celestial bodies like the sun, pulsars, and white dwarfs. Each of these are massive sources energy burning off hydrogen in massive nuclear reactions. This produces massive amounts of radiation in the form of rays. Outside of the Earth’s protective atmosphere the radiation manifests itself in cosmic rays. Cosmic rays carry tremendous amounts of energy but what makes them pack such a punch are the gamma rays that they are made up of.

The most interesting characteristic of gamma rays is that they don’t have a uniform energy level. In some cases the energy levels vary so much you can have gamma rays that meet every criterion for the term but in the end have less energy than an x ray from a X ray machine at the hospital. The energy of the gamma ray largely depends on the source and production of the radiation.

In the end Gamma rays are one the many interesting energy phenomena in our universe and scientist are constantly looking to learn more about them and gain a better understanding of their properties.

We have written many articles about Gamma Ray for Universe Today. Here’s an article about Gamma Rays, and here are the Top Ten Gamma Ray Sources from the Fermi Telescope.

If you’d like more info on Gamma Rays, check out the NASA Official Fermi Website. And here’s a link to NASA’s Article on Gamma Rays.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 136: Gamma Ray Astronomy.

, ,

Comments are closed.