Screenshot of the eclipse movie.

Astronomers Image Mysterious Dark Object That Eclipses Epsilon Aurigae

Article Updated: 24 Dec , 2015

by

Epsilon Aurigae has baffled astronomers since the 1800’s, but new images are providing insight into this very unusual eclipsing binary star. While eclipsing binary stars aren’t unique in themselves, the way this star fades and then regains its brightness is inimitable and has not been fully understood, even after over 175 years of study. One theory has been that a large opaque disk seen nearly edge-on eclipses the primary star. The new images from an instrument developed at the University of Michigan appear to confirm that theory. “It kind of blows my mind that we could capture this,” said John Monnier from U-M. “There’s no other system like this known. On top of that, it seems to be in a rare phase of stellar life. And it happens to be so close to us. It’s extremely fortuitous.”

Epsilon Aurigae has a two-year-long eclipse that occurs every 27 years. The current eclipse started in August 2009 and amateur and professional astronomers have taken this opportunity to train as many telescopes on the event as possible.

Monnier led the development of the Michigan Infra-Red Combiner (MIRC) instrument, which uses interferometry to combine the light entering four telescopes at the CHARA array at Georgia State University and amplify it so that it seems to be coming through a device 100 times larger than the Hubble Space Telescope. MIRC allowed astronomers to “see” the eclipsing object for the first time.

The object that eclipses the primary star is dark — almost invisible — and is only seen as it passes in front of Epsilon Aurigae, the fifth brightest star in the northern constellation Auriga. Because astronomers hadn’t observed much light from it, one theory is the object was a stellar mass black hole. But the prevailing theory labeled it a smaller star orbited edge-on by a thick disk of dust. The theory held that the disk’s orbit must be in precisely the same plane as the dark object’s orbit around the brighter star, and all of this had to be occurring in the same plane as Earth’s vantage point. As unlikely as this alignment would be, it explained the observations.

The new images show that this is indeed the case. A geometrically thin, dark, dense, but partially translucent cloud can be seen passing in front of Epsilon Aurigae.

“This really shows that the basic paradigm was right, despite the slim probability,” Monnier said, and the disk appears much flatter than recent modeling from the Spitzer Space Telescope suggests. “It’s really flat as a pancake,” he said.
[/caption]

While the “movie” of the disk passing in front of the star looks eerily like Saturn’s rings, Monnier doesn’t think the object is like a ring system.

“Ring systems are generally (always) quite sparsely populated and not optically thick,” Monnier said in an email to Universe Today. “Also ring systems have virtually no gas and settle into *extremely* thin layers. Both of these facts make it highly unlikley that the dust Eps Aur is in a “ring” because it wouldn’t be able to completely absorb so much of the star light during eclipse. That said, we don’t know much about the distribution — there might be a bit of a central hole as indicated by brightening of the star during mid-eclipse seen in the past.”

As to why this object is so dark, Monnier said, “At this epoch we are seeing the back side that can’t do any reflecting. We would expect some light to scatter off at other times in the orbit and would be worth looking for but requires very high angular resolution and high dynamic range. Note that the disk is not completely dark — the infrared glow of the cool dust grains have been seen in the 1980s and most recently in a Spitzer space telescope paper by Hoard et al.” (See the paper, “Taming the Invisible Monster: System Parameter Constraints for Epsilon Aurigae from the Far-Ultraviolet to the Mid-Infrared.”

MIRC has also allowed astronomers to see the shape and surface characteristics of stars for the first time. Previously, stars were mere points of light even with the largest telescopes.

“Interferometry has made high resolution imaging of distant objects a reality,” said Fabien Baron, a post-doctoral researcher at U-M who helped with the imaging in this study. “It most probably will solve many mysteries but also raise many new questions.”

The new findings will be published in the April 8 edition of Nature. Researchers from the University of Denver and Georgia State University also contributed to the research.

Sources: EurekAlert, email exchange with John Monnier

, ,



15 Responses

  1. IVAN3MAN_AT_LARGE says:

    At the first paragraph, in the third line, there’s a missing “s” in the possessive form of the pronoun “it”.

  2. Oh, IVAN3MAN, what would I do without you???

  3. IVAN3MAN_AT_LARGE says:

    @ Nancy,

    You can thank my irascible English teacher, who taught me, back in the late 1970s, for that! 🙂

  4. Astrofiend says:

    An incredible achievement, and what a fascinating system!

    Great to see the CHARA array putting out this sort of work – high angular resolution imaging has so much promise but has been slow in finding it’s feet. Both the CHARA array over in the states and the SUSI array in Australia (sister instruments in a way) will yield many more interesting discoveries in the coming years in high angular res astronomy me thinks.

  5. William928 says:

    @IVAN3MAN_AT_LARGE:

    I believe it’s time for you to grab your coat and see yourself out. What a fascinating article, thanks Nancy! Incredible to be getting these types of images.

  6. TerryG says:

    Way to go MIRC/CHAR!

    A truly remarkable result for interferometry given Earth’s high atmospheric opacity to ground based IR telescopes, which AFAIR was a selling point for Spitzer, SOFIA and JWST.

    It will fascinating to watch as the center of the disk emerges over the next twelve months and if the eclipsing object lights up as it passes behind Epsilon Aurigae thirteen years from now.

    Great article! Thanks.

  7. sfwrtr says:

    The disk must be large, but how large? And how massive? How far is the companion from Epsilon Aurigae?

  8. Navneeth says:

    IVAN3MAN_AT_LARGE, you missed the (missing) full-stop at the end of the first sentence in the fourth paragraph. 😛 😉

  9. Kevin says:

    That is certainly weird. Maybe a disc of dust in orbit around the star?

  10. Dark Gnat says:

    It looks like an Imperial Star Destroyer to me…

    Actually, this is just awesome. Just imaging the star’s disk is an amazing feat in itself, but this is marvelous. Really creepy too!

  11. Aodhhan says:

    INVAN3MAN,
    I don’t understand why you choose the one grammatical error in an article which has many errors. It doesn’t affect the content any more than those you didn’t say anything about.

  12. Spoodle58 says:

    Wow, I love the “what the hell is this” feeling looking at that movie. Not that this would be a simple answer but I keep thinking ringworld looking at this.

  13. Popisfizzy says:

    Aodhhan, that’s not a grammatical error, but a typographical/orthographical error. Perhaps you shouldn’t correct others when you don’t know what you are talking about, generally-speaking.

  14. IVAN3MAN_AT_LARGE says:

    @ Aodhhan,

    I’ve mentioned this before: it’s generally easy to proofread someone else’s work, but difficult to proofread one’s own work, which is why I usually put aside an essay or letter that I’ve written until the next day to check it over, and I always manage to spot grammatical and/or typographical/orthographical errors that I had missed the night before; it’s the change of perspective that does it!

    Therefore, I understand that Nancy (and other writers on Universe Today) do not have the time to do that, so I give her (or whoever wrote the article) some slack and I only point out the obvious errors, but I don’t bother with the minor ones — hey, I don’t want to detract from the article! 🙂

  15. bugz says:

    Fascinating. (I feel like Spock now.)

Comments are closed.