We can only imagine what the meteor storm from Comet Siding Spring must have looked like standing on the surface of Mars on October 19, 2014. NASA scientists announced today that the planet experienced an exceptional shower during the comet's flyby, saturating the sky. Source: Stellarium

Mind-blowing Meteor Shower on Mars During Comet Flyby, Say NASA Scientists

Article Updated: 23 Dec , 2015

by

“Thousands of meteors per hour would have been visible — truly astounding to the human eye.” That’s Nick Schneider’s description of what you and I would have seen standing on Mars during Comet Siding Spring’s close flyby last month. “It would have been really mind-blowing,” he added. Schneider is instrument lead for MAVEN’s Imaging Ultraviolet Spectrograph (IUVS).

He and a group of scientists who work as lead investigators for instruments on the MAVEN and  Mars Reconnaissance Orbiter (MRO) spacecraft shared the latest results from the comet flyby during a media teleconference earlier today. There were many surprises. Would we expect anything less from a comet?

Here’s a summary of the results:

A very dusty ice ball – The comet’s dust tail and the amount of dust in its coma were much larger than expected, prompting Jim Green, director of NASA’s Planetary Science Division in Washington,  to remark: “It makes me very happy we hid them (the spacecraft) on the backside of Mars. That really saved them.” Siding Spring dumped several tons of fine dust into the Martian atmosphere prompting a spectacular meteor shower and possibly causing a yellow, twilight afterglow above the Curiosity landing site from vaporizing sodium atoms contained in the minerals. That, and dust in the mid-levels of the atmosphere at the time contributed to the rover’s difficulty in getting good photos of the comet itself. Scientists are still examining the images.

MAVEN's Ultraviolet Imaging Spectrograph (IUVS) uses limb scans to map the chemical makeup and vertical structure across Mars' upper atmosphere. It detected strong enhancements of magnesium and iron from ablating incandescing dust from Comet Siding Spring. Credit: NASA

MAVEN’s Ultraviolet Imaging Spectrograph (IUVS) uses limb scans to map the chemical makeup and vertical structure across Mars’ upper atmosphere. It detected strong enhancements of magnesium and iron from ablating incandescing dust from Comet Siding Spring. Credit: NASA

I'm not big into graphs either, but check out the heavy metal drama in this. On the left is the "before" scan from MAVEN's IUVS instrument; on the right, during the comet's close approach. The spike in magnesium from vaporizing comet dust is impressive. Ionized magnesium is the strongest spike with neutral and ionized iron on the left in smaller amounts. Both elements are common in meteorites as well as on Earth. Credit: NASA

I’m not big into graphs either, but check out the heavy metal drama going on here. On the left is the “before” scan from MAVEN’s IUVS instrument; on the right, during the comet’s close approach. The spike in magnesium from vaporizing comet dust is impressive. Ionized magnesium is the strongest spike with neutral and ionized iron on the left in smaller amounts. Both elements are common in meteorites as well as on Earth. Credit: NASA

Profiles showing spikes in the amounts of eight different metals detected in Mars' atmosphere during the flyby by MAVEN's Neutral Gas and Ion Mass Spectrometer (NGIMS). The emissions faded with a short time. Credit: NASA

Profiles showing spikes in the amounts of eight different metals over time detected in Mars’ atmosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer (NGIMS). The emissions faded within a short time, but chemicals from the comet will continue to interact with the Martian atmosphere over time. Credit: NASA

Chemistry of Mars’ atmosphere changed – Dust vaporized in the intense meteor shower produced a striking increase in the amount of magnesium, iron and others metals in Mars’ upper atmosphere. “We were pressed back in our chairs,” said Mike Schneider. The bombardment created a temporary new layer of comet-tainted air and may have acted as condensation nuclei for the formation of high-altitude clouds. MAVEN’s Neutral Gas and Ion Mass Spectrometer (NGIMS) recorded huge spikes in the levels of eight different metals during the comet’s passage and then trailed off a day or so later. “They came to MAVEN as a free sample from no less than an Oort Cloud comet,” said Mehdi Benna, instrument scientist for MAVEN’s Neutral Gas and Ion Mass Spectrometer.

The MARSIS instrument on the Mars Express is a ground penetrating radar sounder used to look for subsurface water and ice. It can also make soundings of the ionosphere. It was used to see the new ionospheric layer formed by vaporizing comet dust on October 19th. Credit: ESA

The MARSIS instrument on the Mars Express is a ground penetrating radar sounder used to look for subsurface water and ice. It can also make soundings of the ionosphere. It was used to see the new ionospheric layer formed by vaporizing comet dust on October 19th. Credit: ESA

The Mars Express radar probed the ionosphere (upper atmosphere) at three different times. At top, before the comet arrived; middle, 7 hours later after the comet's closest approach and bottom, hours later after the comet had departed. The middle graph shows a strong signal (blue horizontal bar) from the creation of newly-ionized layer of the planet's lower atmosphere from hot, fast-moving comet dust. Credit: ESA

The Mars Express radar probed the ionosphere (upper atmosphere) at three different times. At top, before the comet arrived; middle, 7 hours later after the comet’s closest approach and bottom, hours later after the comet had departed. The middle graph shows a strong signal (blue horizontal bar) from the creation of a newly-ionized layer of the planet’s lower atmosphere from hot, fast-moving comet dust. Credit: ESA

 

Flaming comet dust creates new ionospheric layer – Comet dust slamming into the atmosphere at 125,000 mph (56 km/sec) knocked electrons loose from atoms in the thin Martian air  50-60 miles (80-100 km) high, ionizing them and creating a very dense ionization layer in the planet’s lower ionosphere seven hours after the comet’s closest approach. Normally, Mars ionosphere is only seen on the dayside of the planet, but even when the MARSIS instrument on Mars Express  beamed radio waves through the atmosphere on the nightside of the planet, it picked up a very strong signal.

54 red-filtered images of the comet's nucleus-coma taken by the MRO's HiRISE camera show changes in the flow of material leaving the comet. Credit: NASA

54 red-filtered, false-color images of the comet’s nucleus-coma taken by the MRO’s HiRISE camera show changes in the flow of material leaving the comet. Based on the photos, the comet’s nucleus spins once every 8 hours. Credit: NASA

The five closest photos made with the HiRISE camera show the combined light of the nucleus and coma. Scale is 140-meter per pixel at top and 177-meters at bottom. Scientists will further process these images to separate the nucleus from the coma. Credit: NASA

The five closest photos made with the HiRISE camera show the combined light of the nucleus and coma. Scale is 140-meter per pixel at top and 177-meters at bottom. Scientists will further process these images to separate the nucleus from the coma. Credit: NASA

Nucleus spins once during your work day – Comet Siding Spring’s icy core spins once every 8 hours and its irregular shape causes strong variations in the comet’s brightness. The comet’s size appears less certain  – at least for the moment – with estimates anywhere between a few hundred meters to 2 km (1.2 miles). More analysis on images taken by MRO’s HiRISE camera should narrow that number soon.

CRISM photo and spectrum of Comet Siding Spring. The spectrum is "flat", indicating we're seeing sunlight reflected off comet dust. The intriguing color variations in the image tell of dust particles of varying size leaving the nucleus. Credit: NASA

CRISM photo and spectrum of Comet Siding Spring. The spectrum is “flat”, indicating we’re seeing ordinary sunlight reflecting off comet dust. The intriguing color variations in the image tell us the comet’s spewing dust particles of many sizes. Credit: NASA

Dust motes of many sizes – Color variations across Siding Spring’s coma seen by Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) indicate it’s releasing dust particles of different sizes – big and little.

The scientists involved in the encounter couldn’t be happier with how the instruments functioned and the amount of hard data returned. Said Jim Green: “We are so lucky to observe this once-in-a-lifetime event.” How true when you consider that it takes about 8 million years for a comet from the Oort Cloud, that vast reservoir of frozen comets  extending nearly a light year from the Sun, to get here in the first place.  Nick Schneider put it another way:

“Not only is this a free sample of the Oort Cloud in Mars’ atmosphere, but it gives us a chance to learn more about Mars itself.”

If you’d like to listen in to the hour-long teleconference at any time, it’ll be up for the next week or so HERE.

, , , , ,



6 Responses

  1. steveintucsonaz says:

    enjoyed the teleconference-thanks for linking it.

  2. Bob King says:

    Steve,
    You’re welcome. I thought the scientists were very clear – enthusiastic too. I only regret that the time for questions was brief.

  3. Aqua4U says:

    Mg+ and Sodium from the Oort cloud no less. Cometary formation theories anyone? This will no doubt spin up a few doctorates..

    The info took a while to reach us but was worth waiting for!

  4. Pvt.Pantzov says:

    great article mr. king. it would have been beautiful to see. quite an interesting selection of metals.

  5. BCstargazer says:

    I wonder if our own atmosphere’s chemistry changes during an event like the 2001 Leonids. Is there similar instruments in Earth’s orbit today if such an occasion present itself? Couldn’t we use this data to investigate comet Swift-Tuttle’s origins?

Comments are closed.