Curiosity rover maneuvers around ‘Kimberley’ seeking potential Red Planet Drill Sites

by Ken Kremer on April 5, 2014

Want to stay on top of all the space news? Follow @universetoday on Twitter

Curiosity maneuvers into ‘Kimbeley’ and scans scientifically intriguing Martian rock outcrops in search of next drilling location exhibiting several shallow hills.  Rover tracks at right in this colorized Navcam photomosaic assembled from raw images snapped on Sol 589, April 3, 2014. Credit: NASA/JPL/Marco Di Lorenzo /Ken Kremer - kenkremer.com

Curiosity maneuvers into ‘Kimbeley’ and scans scientifically intriguing Martian rock outcrops in search of next drilling location exhibiting several shallow hills in foreground and dramatic Gale crater rim backdrop. Rover tracks at right in this colorized Navcam photomosaic assembled from raw images snapped on Sol 589, April 3, 2014.
Credit: NASA/JPL/Marco Di Lorenzo /Ken Kremer – kenkremer.com

NASA’s car sized Curiosity rover has arrived at a scientifically enticing science destination at “The Kimberley Waypoint” where researchers hope to carry out the next drilling operation into alien Martian terrain in search of further clues about ancient Red Planet environments that may have been favorable for life.

“We are officially in ‘The Kimberley’ now,” Curiosity Principal Investigator John Grotzinger, of the California Institute of Technology, Pasadena, told Universe Today.

Since arriving in the Kimberley region, Curiosity’s earth-bound handlers have been maneuvering the 1 ton robot to thoroughly survey the destination dubbed “The Kimberley”.

Why was Kimberley chosen as a science destination?

“The Kimberley” has interesting, complex stratigraphy,” Grotzinger told me.

The team moved the six wheeled robot further this week in search of a suitable location to conduct the next drilling operation. The terrain is replete with diverse rock types and extensive outcrops.

I asked Grotzinger if today’s (April 5) location at ‘The Kimberley’ is the intended drill site?

“It’s a possible drill site,” Grotzinger replied.

“Pending further evaluation,” he noted.

Curiosity scans scientifically intriguing rock outcrops of Martian terrain at ‘The Kimberley’ waypoint in search of next drilling location, beside low hill at right.  Mastcam color photomosaic assembled from raw images snapped on Sol 590, April 4, 2014. Credit: NASA/JPL/MSSS/Ken Kremer - kenkremer.com/Marco Di Lorenzo

Curiosity scans scientifically intriguing rock outcrops of Martian terrain at ‘The Kimberley’ waypoint in search of next drilling location, beside low hill at right. Mastcam color photomosaic assembled from raw images snapped on Sol 590, April 4, 2014. Credit: NASA/JPL/MSSS/Ken Kremer – kenkremer.com/Marco Di Lorenzo

Curiosity drove the final stretch of some 98 feet (30 meters) on Wednesday, April 2, required to arrive at a major stopping waypoint planned since early 2013 for up close study of the Red Planet’s rocks.

Along the recent dune filled path to ‘The Kimberley’, Curiosity snapped breathtaking landscapes around the irresistible ‘Junda’ outcrop, much like a tourist.

See our photomosaics showing the spectacularly inviting terrain around Kimberly and Junda, above and below, by Marco Di Lorenzo and Ken Kremer.

Martian landscape with rows of curved rock outcrops at ‘Kimberly’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site.  This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014).  Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Martian landscape with rows of curved rock outcrops at ‘Kimberly’ in the foreground and spectacular Mount Sharp on the horizon. NASA’s Curiosity Mars rover pulled into Kimberly waypoint dominated by layered rock outcrops as likely drilling site. This colorized navcam camera photomosaic was assembled from imagery taken on Sol 576 (Mar. 20, 2014). Credit: NASA/JPL-Caltech/Marco Di Lorenzo/Ken Kremer-kenkremer.com

The state-of-the-art robot now sits at a vantage point at “The Kimberley” enabling a detailed photographic survey of the rock exposures and surroundings with the high resolution Mastcam cameras.

The new imagery will be used to select the most scientifically productive drilling locations.

“It is named after a remote region of western Australia,” Grotzinger informed me.

The team chose Kimberley because its lies at the intersection of four different types of rocks, including striated rocks overlain by others and deposited in a decipherable geological relationship to each other.

Researchers directed Curiosity on a pinpoint drive to ‘Kimberley’ after high resolution imagery and mineral mapping spectrometry gathered by NASA’s powerful telescopic cameras aboard the Mars Reconnaissance Orbiter (MRO) circling overhead piqued their interest.

Curiosity looks back at Martian sand dunes and rover tracks after passing by Junda outcrop (right) on Sol 548 (Feb. 19, 2014) with Gale Crater rim and Mount Sharp on the distant horizon. Navcam colorized photomosaic. Credit: NASA/JPL-Caltech/Ken Kremer- kenkremer.com/Marco Di Lorenzo

Curiosity looks back at Martian sand dunes and rover tracks after passing by Junda outcrop (right) on Sol 548 (Feb. 19, 2014) with Gale Crater rim and Mount Sharp on the distant horizon. Navcam colorized photomosaic. Credit: NASA/JPL-Caltech/Ken Kremer- kenkremer.com/Marco Di Lorenzo

“This is the spot on the map we’ve been headed for, on a little rise that gives us a great view for context imaging of the outcrops at the Kimberley,” said Melissa Rice, Curiosity science planning lead, of Caltech.

The team expects Curiosity to investigate Kimberley for several weeks of observations, including sample-drilling and onboard laboratory analysis of the area’s rocks with the CheMin and SAM miniaturized chemistry labs.

If drilling is warranted, Kimberley would be the site of Curiosity’s first drilling operation since boring into the ‘John Klein’ and ‘Cumberland’ outcrop targets during the spring of 2013 at Yellowknife Bay.

The robot has conducted cleaning activities of SAM, CheMin and the CHIMRA sample handling mechanism in anticipation of boring into the Martian outcrops and delivering powdery, pulverized samples of cored Martian rocks to SAM and CheMin – waiting patiently inside the robots belly to eat something exciting from the Red Planet.

Curiosity departed the Yellowknife Bay region in July 2013 where she discovered a habitable zone and thereby accomplished the primary goal of the mission.

To date, Curiosity’s odometer totals 3.8 miles (6.1 kilometers) since landing inside Gale Crater on Mars in August 2012. She has taken over 137,000 images.

The sedimentary foothills of Mount Sharp, which reaches 3.4 miles (5.5 km) into the Martian sky, is the 1 ton robots ultimate destination inside Gale Crater because it holds caches of water altered minerals. Such minerals could possibly indicate locations that sustained potential Martian life forms, past or present, if they ever existed.

Curiosity has some 4 kilometers to go to reach the base of Mount Sharp.

She may arrive at the lower reaches of Mount Sharp sometime in the latter half of 2014, but must first pass through a potentially treacherous dune field.

Meanwhile, NASA’s sister Opportunity rover is exploring clay mineral outcrops by the summit of Solander Point on the opposite side of Mars at the start of her 2nd Decade investigating the Red Planet’s mysteries.

A pair of new orbiters are streaking to the Red Planet to fortify Earth’s invasion fleet- NASA’s MAVEN and India’s MOM.

Stay tuned here for Ken’s continuing Curiosity, Opportunity, Chang’e-3, SpaceX, Orbital Sciences, LADEE, MAVEN, MOM, Mars and more planetary and human spaceflight news.

Learn more at Ken’s upcoming presentations at the NEAF convention on April 12/13 and at Washington Crossing State Park, NJ on April 6.

Ken Kremer

Map of Curiosity Mars Rover's Drives to 'the Kimberley' Waypoint. This map shows the route driven by NASA's Curiosity Mars rover during March and April 2014 in its approach to and arrival at a waypoint called "the Kimberley," which rover team scientists chose in 2013 as the location for the mission's next major investigations. Credit: NASA/JPL-Caltech/Univ. of Arizona

Map of Curiosity Mars Rover’s Drives to ‘the Kimberley’ Waypoint. This map shows the route driven by NASA’s Curiosity Mars rover during March and April 2014 in its approach to and arrival at a waypoint called “the Kimberley,” which rover team scientists chose in 2013 as the location for the mission’s next major investigations. Credit: NASA/JPL-Caltech/Univ. of Arizona

About 

Dr. Ken Kremer is a speaker, scientist, freelance science journalist (Princeton, NJ) and photographer whose articles, space exploration images and Mars mosaics have appeared in magazines, books, websites and calanders including Astronomy Picture of the Day, NBC, BBC, SPACE.com, Spaceflight Now and the covers of Aviation Week & Space Technology, Spaceflight and the Explorers Club magazines. Ken has presented at numerous educational institutions, civic & religious organizations, museums and astronomy clubs. Ken has reported first hand from the Kennedy Space Center, Cape Canaveral and NASA Wallops on over 40 launches including 8 shuttle launches. He lectures on both Human and Robotic spaceflight - www.kenkremer.com. Follow Ken on Facebook and Twitter

Aqua4U April 5, 2014 at 6:07 PM

Ken, you are as right as rain! Thanks for being there for us on the weekends!
GO Curiosity!

Adrian Morgan April 5, 2014 at 7:08 PM

Yet another region on Mars named after a region in Australia. But setting a high expectation for spectacular geography…

Georgie April 5, 2014 at 7:43 PM

Just curious. What’s that white tower looking thing in the left top area of the horizon in the Sol 589 image?

eSpace April 5, 2014 at 8:31 PM

Hmmm… a white monolith. Somehow I was expecting a black one. Sure looks interesting in the mosaic, but didn’t see anything in the raw images. My guess would be that it’s an artifact of the stitching to create the mosaic.

Ken – Thanks for all the great articles!!

Ken Kremer April 5, 2014 at 8:39 PM

Thanks eSpace & Aqua4U. Will leave it to my 2 lieutenants to deal with this effectively!

Aqua4U April 5, 2014 at 8:42 PM

Hmm… Like eSpace, I went into the MSL raw images page to see if I could find the image with that ‘white tower’. None the images exactly matched the terrain but this one came close? If this IS the image that was used, it would have to be brightened significantly to be useful. In the process of doing that, flairs might appear? That’s my take anyway.

http://mars.jpl.nasa.gov/msl-raw-images/proj/msl/redops/ods/surface/sol/00589/opgs/edr/ncam/NLB_449788141EDR_F0310000NCAM00261M_.JPG

Georgie April 5, 2014 at 11:02 PM

Ahh.. Artifacts! Thanks guys!

Aqua4U April 6, 2014 at 12:24 PM

Hey Georgie! How’s about an exercise in science fiction?

SciFi short story subject: One of NASA’s Curiosity mission techies reads these posts and also gets interested in the ‘artifact’. She decides to check it out a bit further and queries the imagers. None of them can find any good reason for the anomaly. As a group they decide to request a close-up MRO HiRise image. A couple days later when MRO’s orbit allows, the image is taken and processed. There is something on the surface that is very much out of place. Whatever it is, has a linear shape with sharp angular features. They decide that this must be pareidolia? What else could it be? Zooming in and running an image enhancement routine reveals the object more clearly and it is obviously a manufactured device or craft. They call the mission director….

Comments on this entry are closed.

Previous post:

Next post: