Prebiotic Molecules May Form in Exoplanet Atmospheres

by Shannon Hall on December 24, 2013

Want to stay on top of all the space news? Follow @universetoday on Twitter

Image Credit: NASA/JPL

An artist’s conception of an exoplanet with a thick atmosphere. Image Credit: NASA/JPL

Before there was life as we know it, there were molecules. And after many seemingly unlikely steps these molecules underwent a magnificent transition: they became complex systems with the capability to reproduce, pass along information and drive chemical reactions. But the host of steps leading up to this transition has remained one of science’s beloved mysteries.

New research suggests that the building blocks of life — prebiotic molecules — may form in the atmospheres of planets, where the dust provides a safe platform to form on and various reactions with the surrounding plasma provide enough energy necessary to create life.

“If the formation of life is like a jigsaw puzzle — a very big and complicated jigsaw puzzle — I like to imagine prebiotic molecules as some of the individual puzzle pieces,” said St. Andrews professor Dr. Craig Stark. “Putting the pieces together you form more complicated biological structures making a clearer, more recognizable picture. And when all the pieces are in place the resulting picture is life.”

We currently think prebiotic molecules form on the tiny ice grains in interstellar space. While this may seem to contradict the readily accepted belief that life in space is impossible, the surface of the grain actually provides a nice hospitable environment for life to form as it protects molecules from harmful space radiation.

“Molecules are formed on the dust surface from the adsorption of atoms and molecules from the surrounding gas,” Stark told Universe Today. “If the appropriate ingredients to make a particular molecular compound are available, and the conditions are right, you’re in business.”

By “conditions,” Stark is hinting at the second ingredient necessary: energy. The simple molecules that populate the galaxy are relatively stable; without an incredible amount of energy they won’t form new bonds. It has been thought that life could form in lightning strikes and volcanic eruptions for this very reason.

So Stark and his colleagues turned their eyes to the atmospheres of exoplanets, where dust is immersed in a plasma full of positive ions and negative electrons. Here the electrostatic interactions of dust particles with plasma may provide the high energy necessary to form prebiotic compounds.

In a plasma the dust grain will soak up the free electrons quickly, becoming negatively charged. This is because electrons are lighter, and therefore quicker, than positive ions. Once the dust grain is negatively charged it will attract a flux of positive ions, which will accelerate toward the dust particle and collide with more energy than they would in a neutral environment.

In order to test this, the authors studied an example atmosphere, which allowed them to examine the various processes that may turn the ionized gas into a plasma as well as determine if the plasma would lead to energetic enough reactions.

“As a proof of principle we looked at the sequence of chemical reactions that lead to the formation of the simplest amino acid glycine,” Stark said. Amino acids are great examples of prebiotic molecules because they are required for the formation of proteins, peptides and enzymes.

Their models showed that “the plasma ions can indeed be accelerated to sufficient energies that exceed the activation energies for the formation of formaldehyde, ammonia, hydrogen cyanide and ultimately the amino acid glycine,” Stark told Universe Today. “This may not have been possible if the plasma was absent.”

The authors demonstrated that with modest plasma temperatures, there is enough energy to form the prebiotic molecule glycine. Higher temperatures may also enable more complex reactions and therefore more intricate prebiotic molecules.

Stark and his colleagues demonstrated a viable pathway to the formation of a prebiotic molecule, and therefore life, in seemingly common conditions. While the origin of life may remain one of science’s beloved mysteries, we continue to gain a better understanding, one puzzle piece at a time.

The paper has been accepted for publication in the journal Astrobiology and is available for download here.

About 

Shannon Hall is an aspiring science journalist and is an editorial intern at Sky & Telescope magazine. She holds two bachelor's degrees from Whitman College in astrophysics and philosophy, and recently received her master's degree in astrophysics from the University of Wyoming.

Aqua4U December 25, 2013 at 1:31 PM

Got me thinking about lightning on Earth, at Jupiter, Saturn, Uranus and Neptune. How hot are those bolts?

“…immersed in a plasma full of positive ions and negative electrons. Here
the electrostatic interactions of dust particles with plasma may
provide the high energy necessary to form prebiotic compounds.”

AND other molecules? I like the idea that Saturn and the other gas giants are constantly producing water molecules using ionized hydrogen from Sol and oxygen created by electrostatic discharge/plasmas deep within. Thus the ‘water/ice zone’ extends from the Earth’s orbit thru the asteroid belt and outward into interplanetary space?

IVAN3MAN_AT_LARGE December 25, 2013 at 2:18 PM

Got me thinking about lightning on Earth, at Jupiter, Saturn, Uranus and Neptune. How hot are those bolts?

From Wikipedia, Lightning (Discharge): “[...] The core temperature of the plasma during the [lightning] return stroke may exceed 50,000 K, causing it to brilliantly radiate with a blue-white color. [...]“.

magnus.nyborg December 26, 2013 at 6:05 AM

The sun is a mainsequence star, fusing hydrogen to helium in the core – that is the ONLY fusion-reaction active at this point in time, and this is the FIRST fusion-reaction in the sequence of possible reactions. The sun do not produce oxygen, it only releases oxygen that was present during its formation, or oxygen brought to it by comets and other bodies that collide with it.
A lightning bolt is not hot enough to cause any fusion.
Ergo, there is absolutely no scientific support for your ‘idea’.

Aqua4U December 26, 2013 at 12:02 PM

Sol DOES emit oxygen in the solar wind, but it is only a small percentage of the entire flow. Hydrogen and helium are the main constituents. Other elements include, Lithium, Barium, Carbon, Nitrogen, Neon, Magnesium, Silicon, Sulfur and Argon… the oxygen abundance lays between the Nitrogen and Neon abundances – minor as they are. I am positing that oxygen, formed early in the solar nebula is concentrated at depth in gas giants and may be energized and expelled from the gravity well thru excitation by lightning plasma(s) and therein combined with ionized hydrogen from Sol to form water vapor. Take a look at this paper?

http://genesis.lanl.gov/publications/Wiens_et_al_EPSL_review.pdf

magnus.nyborg December 27, 2013 at 5:58 AM

The paper you linked provides no support for your statements, because it simply talks about the emission of elements through the solar wind, and the ratios thereof, and loosely ties in spallation mechanisms.
Maybe time for _you_ to take a look at the paper? And this time, read it… Then, explain how that paper in any way clues you towards your own ‘idea’.

Comments on this entry are closed.

Previous post:

Next post: