Moonlight Is a Many-Splendored Thing

We see the Moon differently depending upon the wavelength in which we view it. Top row from left:

“By the Light of the Silvery Moon” goes the song. But the color and appearance of the Moon depends upon the particular set of eyes we use to see it. Human vision is restricted to a narrow slice of the electromagnetic spectrum called visible light.

With colors ranging from sumptuous violet to blazing red and everything in between, the diversity of the visible spectrum provides enough hues for any crayon color a child might imagine. But as expansive as the visual world’s palette is, it’s not nearly enough to please astronomers’ retinal appetites.

Visible light is a sliver of light's full range of "colors" which span from kilometers-long, low-energy radio waves (left) to short wavelength, energetic gamma rays. It's all light, with each color determined by wavelength. Familiar objects along the bottom reference light wave sizes. Visible light waves are about one-millionth of a meter wide. Credit: NASA
Visible light is a sliver of light’s full range of “colors” which span from kilometers-long, low-energy radio waves (left) to short wavelength, energetic gamma rays. It’s all light, with each color determined by wavelength. Familiar objects along the bottom reference light wave sizes. Visible light waves are about one-millionth of a meter wide. Credit: NASA

Since the discovery of infrared light by William Herschel in 1800 we’ve been unshuttering one electromagnetic window after another. We build telescopes, great parabolic dishes and other specialized instruments to extend the range of human sight.  Not even the atmosphere gets in our way. It allows only visible light, a small amount of infrared and ultraviolet and selective slices of the radio spectrum to pass through to the ground. X-rays, gamma rays and much else is absorbed and completely invisible.

Earth's atmosphere blocks a good portion of light's diversity from reaching the ground, the reason we launch rockets and orbiting telescopes into space. Large professional telescopes are often built on mountain tops above much of the atmosphere allowing astronomers to see at least some infrared light that is otherwise absorbed by air at lower elevations. Credit: NASA
Earth’s atmosphere blocks a good portion of light’s diversity from reaching the ground, the reason we launch rockets and orbiting telescopes into space. Large professional telescopes are often built on mountain tops above much of the denser, lower atmosphere. This expands the viewing “window” into the infrared. Credit: NASA

To peer into these rarified realms, we’ve lofting air balloons and then rockets and telescopes into orbit or simply dreamed up the appropriate instrument to detect them. Karl Jansky’s homebuilt radio telescope cupped the first radio waves from the Milky Way in the early 1930s; by the 1940s  sounding rockets shot to the edge of space detected the high-frequency sizzle of X-rays.  Each color of light, even the invisible “colors”, show us a new face on a familiar astronomical object or reveal things otherwise invisible to our eyes.

So what new things can we learn about the Moon with our contemporary color vision?

Radio Moon
Radio Moon

Radio: Made using NRAO’s 140-ft telescope in Green Bank, West Virginia. Blues and greens represent colder areas of the moon and reds are warmer regions. The left half  of Moon was facing the Sun at the time of the observation. The sunlit Moon appear brighter than the shadowed portion because it radiates more heat (infrared light) and radio waves.

Submillimeter Moon
Submillimeter Moon

Submillimeter: Taken using the SCUBA camera on the James Clerk Maxwell Telescope in Hawaii. Submillimeter radiation lies between far infrared and microwaves. The Moon appears brighter on one side because it’s being heated by Sun in that direction. The glow comes from submillimeter light radiated by the Moon itself. No matter the phase in visual light, both the submillimeter and radio images always appear full because the Moon radiates at least some light at these wavelengths whether the Sun strikes it or not.

Mid-infrared Moon
Mid-infrared Moon

Mid-infrared: This image of the Full Moon was taken by the Spirit-III instrument on the Midcourse Space Experiment (MSX) at totality during a 1996 lunar eclipse. Once again, we see the Moon emitting light with the brightest areas the warmest and coolest regions darkest. Many craters look like bright dots speckling the lunar disk, but the most prominent is brilliant Tycho near the bottom. Research shows that young, rock-rich surfaces, such as recent impact craters, should heat up and glow more brightly in infrared than older, dust-covered regions and craters. Tycho is one of the Moon’s youngest craters with an age of just 109 million years.

Near-infrared Moon
Near-infrared Moon

Near-infrared: This color-coded picture was snapped just beyond the visible deep red by NASA’s Galileo spacecraft during its 1992 Earth-Moon flyby en route to Jupiter. It shows absorptions due to different minerals in the Moon’s crust. Blue areas indicate areas richer in iron-bearing silicate materials that contain the minerals pyroxene and olivine. Yellow indicates less absorption due to different mineral mixes.

Visible light Moon
Visible light Moon

Visible light: Unlike the other wavelengths we’ve explored so far, we see the Moon not by the light it radiates but by the light it reflects from the Sun.

The iron-rich composition of the lavas that formed the lunar “seas” give them a darker color compared to the ancient lunar highlands, which are composed mostly of a lighter volcanic rock called anorthosite.

UV Moon
UV Moon

Ultraviolet: Similar to the view in visible light but with a lower resolution. The brightest areas probably correspond to regions where the most recent resurfacing due to impacts has occurred. Once again, the bright rayed crater Tycho stands out in this regard. The photo was made with the Ultraviolet Imaging Telescope flown aboard the Space Shuttle Endeavour in March 1995.

X-ray Moon
X-ray Moon

X-ray: The Moon, being a relatively peaceful and inactive celestial body, emits very little x-ray light, a form of radiation normally associated with highly energetic and explosive phenomena like black holes. This image was made by the orbiting ROSAT Observatory on June 29, 1990 and shows a bright hemisphere lit by oxygen, magnesium, aluminum and silicon atoms fluorescing in x-rays emitted by the Sun. The speckled sky records the “noise” of distant background X-ray sources, while the dark half of the Moon has a hint of illumination from Earth’s outermost atmosphere or geocorona that envelops the ROSAT observatory.

Gamma ray Moon
Gamma ray Moon

Gamma rays: Perhaps the most amazing image of all. If you could see the sky in gamma rays the Moon would be far brighter than the Sun as this dazzling image attempts to show. It was taken by the Energetic Gamma Ray Experiment Telescope (EGRET).  High-energy particles (mostly protons) from deep space called cosmic rays constantly bombard the Moon’s surface, stimulating the atoms in its crust to emit gamma rays. These create a unique high-energy form of “moonglow”.

Astronomy in the 21st century is like having a complete piano keyboard on which to play compared to barely an octave a century ago. The Moon is more fascinating than ever for it.

NASA’s NuSTAR Scans the Sun with X-ray Vision

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays above particularly active regions (NASA/JPL-Caltech/GSFC)

What if you had x-ray vision like Superman? Or if those funny-looking glasses they advertised in comic books in the 60s actually worked?* Then with those our Sun might look something like this, lighting up with brilliant flares of high-energy x-rays as seen by NASA’s super-sensitive NuSTAR Space Telescope (with a little help from SDO.)

The NuStar Space Telescope launched into Earth orbit by a Orbital Science Corp. Pegasus rocket, 2012. The Wolter telescope design images throughout a spectral range from 5 to 80 KeV. (Credit: NASA/Caltech-JPL)
The NuStar Space Telescope launched aboard a Orbital Sciences Pegasus rocket, on June 13, 2012. (Credit: NASA/Caltech-JPL)

Of course NASA’s orbiting NuSTAR x-ray telescope is not like a typical medical imaging system. Instead of looking for broken bones, NuSTAR (short for Nuclear Spectroscopic Telescope Array) is made to detect high-energy particles blasting across the Universe from exotic objects like supermassive black holes, pulsars, and supernovae.

Read more: Stars Boil Before They Blow Up, Says NuSTAR

But astronomers suggested turning NuSTAR’s gaze upon our own Sun to see what sorts of x-ray activity may be going on there.

“At first I thought the whole idea was crazy,” said Fiona Harrison, a Professor of Physics and Astronomy at Caltech and PI for the NuSTAR mission. “Why would we have the most sensitive high energy X-ray telescope ever built, designed to peer deep into the universe, look at something in our own back yard?”

As it turns out NuSTAR was able to reveal some very interesting features on the Sun, showing where the corona is being heated to very high temperatures. The image above shows NuSTAR’s first observations, overlaid onto data acquired by NASA’s Solar Dynamics Observatory.

NuSTAR data is shown in green and blue, revealing high-energy emission around – but not exactly aligned with – active regions on the Sun where solar plasma is being heated to more than 3 million degrees. The red represents ultraviolet light captured by SDO and shows material in the solar atmosphere at a slightly cooler 1 million degrees.

The west limb of the Sun imaged by NuSTAR and SDO shows areas of high-energy x-rays near active regions and coronal loops (NASA/JPL-Caltech/GSFC)
The NuSTAR data overlaid on the full disk SDO image, rotated so north on the Sun is up. (NASA/JPL-Caltech/GSFC)

Because the Sun isn’t terribly intense in high energy x-ray output it’s safe to observe it with NuSTAR — it’s not likely to burn out the telescope’s sensors. But what NuSTAR can detect may help astronomers determine the exact mechanisms behind the intense coronal heating that occurs in and above the Sun’s chromosphere. If so-called “nanoflares” — miniature and as-yet-invisible versions of solar flares — are responsible, for instance, NuSTAR might be able to catch them in action for the first time.

Read more: Warm Coronal Loops May Hold the Key to Hot Solar Atmosphere

“NuSTAR will be exquisitely sensitive to the faintest X-ray activity happening in the solar atmosphere, and that includes possible nanoflares,” said David Smith, solar physicist and member of the NuSTAR team at the University of California, Santa Cruz.

In addition NuSTAR could potentially detect the presence of axions in the Sun’s core — hypothesized particles that may make up dark matter in the Universe.

NuSTAR may not be a “solar telescope” per se, but that won’t stop astronomers from using its unique abilities to learn more about the star we intimately share space with.

“NuSTAR will give us a unique look at the Sun, from the deepest to the highest parts of its atmosphere.”

– David Smith, solar physicist, University of California Santa Cruz

Read more in a JPL article here.

*I never did get my box of 100 army men, either. Then again, I may have ordered a few decades too late.

The Physics Behind “Interstellar’s” Visual Effects Was So Good, it Led to a Scientific Discovery

Kip Thorne’s concept for a black hole in 'Interstellar.' Image Credit: Paramount Pictures

While he was working on the film Interstellar, executive producer Kip Thorne was tasked with creating the black hole that would be central to the plot. As a theoretical physicist, he also wanted to create something that was truly realistic and as close to the real thing as movie-goers would ever see.

On the other hand, Christopher Nolan – the film’s director – wanted to create something that would be a visually-mesmerizing experience. As you can see from the image above, they certainly succeeded as far as the aesthetics were concerned. But even more impressive was how the creation of this fictitious black hole led to an actual scientific discovery.

Continue reading “The Physics Behind “Interstellar’s” Visual Effects Was So Good, it Led to a Scientific Discovery”

Stars Boil Before They Blow Up, Says NuSTAR

NASA's NuSTAR is revealing the mechanics behind Cassiopeia A's supernova explosion (Image credit: NASA/JPL-Caltech/CXC/SAO)

Supernovas are some of the most energetic and powerful events in the observable Universe. Briefly outshining entire galaxies, they are the final, dying  outbursts of stars several times more massive than our Sun. And while we know supernovas are responsible for creating the heavy elements necessary for everything from planets to people to power tools,  scientists have long struggled to determine the mechanics behind the sudden collapse and subsequent explosion of massive stars.

Now, thanks to NASA’s NuSTAR mission, we have our first solid clues to what happens before a star goes “boom.”

The image above shows the supernova remnant Cassiopeia A (or Cas A for short) with NuSTAR data in blue and observations from the Chandra X-ray Observatory in red, green, and yellow. It’s the shockwave left over from the explosion of a star about 15 to 25 times more massive than our Sun over 330 years ago*, and it glows in various wavelengths of light depending on the temperatures and types of elements present.

Artist's concept of NuSTAR in orbit. (NASA/JPL-Caltech)
Artist’s concept of NuSTAR in orbit. (NASA/JPL-Caltech)

Previous observations with Chandra revealed x-ray emissions from expanding shells and filaments of hot iron-rich gas in Cas A, but they couldn’t peer deep enough to get a better idea of what’s inside the structure. It wasn’t until NASA’s Nuclear Spectroscopic Telescope Array — that’s NuSTAR to those in the know — turned its x-ray vision on Cas A that the missing puzzle pieces could be found.

And they’re made of radioactive titanium.

Many models have been made (using millions of hours of supercomputer time) to try to explain core-collapse supernovas. One of the leading ones has the star ripped apart by powerful jets firing from its poles — something that’s associated with even more powerful (but focused) gamma-ray bursts. But it didn’t appear that jets were the cause with Cas A, which doesn’t exhibit elemental remains within its jet structures… and besides, the models relying on jets alone didn’t always result in a full-blown supernova.

As it turns out, the presence of asymmetric clumps of radioactive titanium deep within the shells of Cas A, revealed in high-energy x-rays by NuSTAR, point to a surprisingly different process at play: a “sloshing” of material within the progenitor star that kickstarts a shockwave, ultimately tearing it apart.

Watch an animation of how this process occurs:

The sloshing, which occurs over a time span of a mere couple hundred milliseconds — literally in the blink of an eye — is likened to boiling water on a stove. When the bubbles break through the surface, the steam erupts.

Only in this case the eruption leads to the insanely powerful detonation of an entire star, blasting a shockwave of high-energy particles into the interstellar medium and scattering a periodic tableful of heavy elements into the galaxy.

In the case of Cas A, titanium-44 was ejected, in clumps that echo the shape of the original sloshing asymmetry. NuSTAR was able to image and map the titanium, which glows in x-ray because of its radioactivity (and not because it’s heated by expanding shockwaves, like other lighter elements visible to Chandra.)

“Until we had NuSTAR we couldn’t really see down into the core of the explosion,” said Caltech astronomer Brian Grefenstette during a NASA teleconference on Feb. 19.

Illustration of the pre-supernova star in Cassiopeia A. It's thought that its layers were "turned inside out" just before it detonated. (NASA/CXC/M.Weiss)
Illustration of the pre-supernova star in Cassiopeia A. It’s thought that its layers were “turned inside out” just before it detonated. (NASA/CXC/M.Weiss)

“Previously, it was hard to interpret what was going on in Cas A because the material that we could see only glows in X-rays when it’s heated up. Now that we can see the radioactive material, which glows in X-rays no matter what, we are getting a more complete picture of what was going on at the core of the explosion.”

– Brian Grefenstette, lead author, Caltech

Okay, so great, you say. NASA’s NuSTAR has found the glow of titanium in the leftovers of a blown-up star, Chandra saw some iron, and we know it sloshed and ‘boiled’ a fraction of a second before it exploded. So what?

“Now you should care about this,” said astronomer Robert Kirshner of the Harvard-Smithsonian Center for Astrophysics. “Supernovae make the chemical elements, so if you bought an American car, it wasn’t made in Detroit two years ago; the iron atoms in that steel were manufactured in an ancient supernova explosion that took place five billion years ago. And NuSTAR shows that the titanium that’s in your Uncle Jack’s replacement hip were made in that explosion too.

“We’re all stardust, and NuSTAR is showing us where we came from. Including our replacement parts. So you should care about this… and so should your Uncle Jack.”

And it’s not just core-collapse supernovas that NuSTAR will be able to investigate. Other types of supernovas will be scrutinized too — in the case of SN2014J, a Type Ia that was spotted in M82 in January, even right after they occur.

“We know that those are a type of white dwarf star that detonates,” NuSTAR principal investigator Fiona Harrison responded to Universe Today during the teleconference. “This is very exciting news… NuSTAR has been looking at [SN2014J] for weeks, and we hope to be able to say something about that explosion as well.”

Previous imaging with Chandra (left, middle) is combined with new data from NuSTAR (right) to make a complete image of a supernova remnant. (NASA/JPL-Caltech/CXC/SAO)
Previous imaging with Chandra (left, middle) is combined with new data from NuSTAR (right) to make a complete image of a supernova remnant. (NASA/JPL-Caltech/CXC/SAO)

One of the most valuable achievements of the recent NuSTAR findings is having a new set of observed constraints to place on future models of core-collapse supernovas… which will help provide answers — and likely new questions — about how stars explode, even hundreds or thousands of years after they do.

“NuSTAR is pioneering science, and you have to expect that when you get new results, it’ll open up as many questions as you answer,” said Kirshner.

Launched in June of 2012, NuSTAR is the first focusing hard X-ray telescope to orbit Earth and the first telescope capable of producing maps of radioactive elements in supernova remnants.

Read more on the JPL news release here, and listen to the full press conference here.

*As Cas A resides 11,000 light-years from Earth, the actual date of the supernova would be about 11,330 years ago. Give or take a few.

Our Galaxy’s Supermassive Black Hole is a Sloppy Eater

X-ray and infrared image of Sgr A*, the supermassive black hole in the center of the Milky Way

Like most galaxies, our Milky Way has a dark monster in its middle: an enormous black hole with the mass of 4 million Suns inexorably dragging in anything that comes near. But even at this scale, a supermassive black hole like Sgr A* doesn’t actually consume everything that it gets its gravitational claws on — thanks to the Chandra X-ray Observatory, we now know that our SMB is a sloppy eater and most of the material it pulls in gets spit right back out into space.

(Perhaps it should be called the Cookie Monster in the middle.*)

New Chandra images of supermassive black hole Sagittarius A*, located about 26,000 light-years from Earth, indicate that less than 1% of the gas initially within its gravitational grasp ever reaches the event horizon. Instead, much of the gas is ejected before it gets near the event horizon and has a chance to brighten in x-ray emissions.

The new findings are the result of one of the longest campaigns ever performed with Chandra, with observations made over 5 weeks’ time in 2012.

Read more: Chandra Stares Deep into the Heart of Sagittarius A*

“This new Chandra image is one of the coolest I’ve ever seen,” said study co-author Sera Markoff of the University of Amsterdam in the Netherlands. “We’re watching Sgr A* capture hot gas ejected by nearby stars, and funnel it in towards its event horizon.”

As it turns out, the wholesale ejection of gas is necessary for our resident supermassive black hole to capture any at all. It’s a physics trade-off.

“Most of the gas must be thrown out so that a small amount can reach the black hole”, said co-author Feng Yuan of Shanghai Astronomical Observatory in China. “Contrary to what some people think, black holes do not actually devour everything that’s pulled towards them. Sgr A* is apparently finding much of its food hard to swallow.”

X-ray image of Sgr A*
X-ray image of Sgr A*

If it seems odd that such a massive black hole would have problems slurping up gas, there are a couple of reasons for this.

One is pure Newtonian physics: to plunge over the event horizon, material captured — and subsequently accelerated — by a black hole must first lose heat and momentum. The ejection of the majority of matter allows this to occur.

The other is the nature of the environment in the black hole’s vicinity. The gas available to Sgr A* is very diffuse and super-hot, so it is hard for the black hole to capture and swallow it. Other more x-ray-bright black holes that power quasars and produce huge amounts of radiation have much cooler and denser gas reservoirs.

Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)
Illustration of gas cloud G2 approaching Sgr A* (ESO/MPE/M.Schartmann/J.Major)

Located relatively nearby, Sgr A* offers scientists an unprecedented view of the feeding behaviors of such an exotic astronomical object. Currently a gas cloud several times the mass of Earth, first spotted in 2011, is moving closer and closer to Sgr A* and is expected to be ripped apart and partially consumed in the coming weeks. Astronomers are eagerly awaiting the results.

“Sgr A* is one of very few black holes close enough for us to actually witness this process,” said Q. Daniel Wang of the University of Massachusetts at Amherst, who led the study.

Watch Black Holes: Monsters of the Cosmos

Source: Chandra press release. Read the team’s paper here.

Image credits: X-ray: NASA/UMass/D.Wang et al., IR: NASA/STScI

_________________

*Any resemblance of Sgr A* to an actual Muppet, real or fictitious, is purely coincidental.

X-ray Burst May Be the First Sign of a Supernova

GRB 080913, a distant supernova detected by Swift. This image merges the view through Swift’s UltraViolet and Optical Telescope, which shows bright stars, and its X-ray Telescope. Credit: NASA/Swift/Stefan Immler

The first moments of a massive star going supernova may be heralded by a blast of x-rays, detectable by space telescopes like Swift, which could then tell astronomers where to look for the full show in gamma rays and optical wavelengths. These findings come from the University of Leicester in the UK where a research team was surprised by the excess of thermal x-rays detected along with gamma ray bursts associated with supernovae.

“The most massive stars can be tens to a hundred times larger than the Sun,” said Dr. Rhaana Starling of the University of Leicester  Department of Physics and Astronomy. “When one of these giants runs out of hydrogen gas it collapses catastrophically and explodes as a supernova, blowing off its outer layers which enrich the Universe.

“But this is no ordinary supernova; in the explosion narrowly confined streams of material are forced out of the poles of the star at almost the speed of light. These so-called relativistic jets give rise to brief flashes of energetic gamma-radiation called gamma-ray bursts, which are picked up by monitoring instruments in space, that in turn alert astronomers.”

Powerful gamma ray bursts — GRBs — emitted from supernovae can be detected by both ground-based observatories and NASA’s Swift telescope. Within seconds of detecting a burst (hence its name) Swift relays its location to ground stations, allowing both ground-based and space-based telescopes around the world the opportunity to observe the burst’s afterglow.

But the actual moment of the star’s collapse, when its collapsing core reacts with its surface, isn’t observed — it happens too quickly, too suddenly. If these “shock breakouts” are the source of the excess thermal x-rays (a.k.a. black body emission) that have been recently identified in Swift data, some of the galaxy’s most energetic supernovae could be pinpointed and witnessed at a much earlier moment in time — literally within the first seconds of their birth.

“This phenomenon is only seen during the first thousand seconds of an event, and it is challenging to distinguish it from X-ray emission solely from the gamma-ray burst jet,” Dr. Starling said. “That is why astronomers have not routinely observed this before, and only a small subset of the 700+ bursts we detect with Swift show it.”

Read more: Finding the Failed Supernovae

More observations will be needed to determine if the thermal emissions are truly from the initial collapse of stars and not from the GRB jets themselves. Even if the x-rays are determined to be from the jets it will provide valuable insight to the structure of GRBs… “but the strong association with supernovae is tantalizing,” according to Dr. Starling.

Read more on the University of Leicester press release here, and see the team’s paper in the Nov. 28 online issue of the Monthly Notices of the Royal Astronomical Society here (Full PDF on arXiv.org here.)

Inset image: An artist’s rendering of the Swift spacecraft with a gamma-ray burst going off in the background. Credit: Spectrum Astro. Find out more about the Swift telescope’s instruments here.

 

Rare X-Ray Nova Reveals a New Black Hole in the Milky Way

Swift J1745-26, with a scale of the moon as it would appear in the field of view from Earth. This image is from September 18, 2012 when the source peaked in hard X-rays. Credit: NASA/Goddard Space Flight Center/S. Immler and H. Krimm

Back in mid-September, the Swift satellite was going about its multi-wavelength business of watching for bursts of bright gamma-ray, X-ray, ultraviolet, or optical events in the sky, when it detected a rising tide of high-energy X-rays from a source toward the center of our Milky Way galaxy. But this was different from any other burst the satellite had detected, and after observing the event for a few days, astronomers knew this had to be a rare X-ray nova. What it meant was that Swift had detected the presence of a previously unknown stellar-mass black hole.

“Bright X-ray novae are so rare that they’re essentially once-a-mission events and this is the first one Swift has seen,” said Neil Gehrels from Goddard Space Flight Center, the mission’s principal investigator. “This is really something we’ve been waiting for.”

The object was named Swift J1745-26 after the coordinates of its sky position, the nova is located a few degrees from the center of our galaxy toward the constellation Sagittarius. While astronomers do not know its precise distance, they think the object resides about 20,000 to 30,000 light-years away in the galaxy’s inner region.

An X-ray nova is a short-lived X-ray source that appears suddenly in the sky and dramatically increases in strength over a period of a few days and then decreases, fading out over a few months. Unlike a conventional nova, where the compact component is a white dwarf, an X-ray nova is caused by material – usually gas — falling onto a neutron star or a black hole.

The rapidly brightening source triggered Swift’s Burst Alert Telescope twice on the morning of Sept. 16, and once again the next day.

Ground-based observatories detected infrared and radio emissions, but thick clouds of obscuring dust have prevented astronomers from catching Swift J1745-26 in visible light.

The nova peaked in hard X-rays — energies above 10,000 electron volts, or several thousand times that of visible light — on Sept. 18, when it reached an intensity equivalent to that of the famous Crab Nebula, a supernova remnant that serves as a calibration target for high-energy observatories and is considered one of the brightest sources beyond the solar system at these energies.

Even as it dimmed at higher energies, the nova brightened in the lower-energy, or softer, emissions detected by Swift’s X-ray Telescope, a behavior typical of X-ray novae. By Wednesday, Swift J1745-26 was 30 times brighter in soft X-rays than when it was discovered and it continued to brighten.

“The pattern we’re seeing is observed in X-ray novae where the central object is a black hole. Once the X-rays fade away, we hope to measure its mass and confirm its black hole status,” said Boris Sbarufatti, an astrophysicist at Brera Observatory in Milan, Italy, who currently is working with other Swift team members at Penn State in University Park, Pa.

Here’s usually happens in events like this: The black hole is part of a binary system with a normal Sun-like star. A stream of material flows into an accretion disk around the black hole. Usually, the disk of gas spirals in steadily to the black hole, heats up and produces a steady X-ray glow. But sometimes, for reasons unknown, the material is held up in the outer regions, held back by some mechanism, almost like a dam. Once enough gas accumulates, the dam breaks and a flood of gas surges towards the black hole, creating the X-ray nova outburst.

“Each outburst clears out the inner disk, and with little or no matter falling toward the black hole, the system ceases to be a bright source of X-rays,” said John Cannizzo, a Goddard astrophysicist. “Decades later, after enough gas has accumulated in the outer disk, it switches again to its hot state and sends a deluge of gas toward the black hole, resulting in a new X-ray outburst.”

This phenomenon, called the thermal-viscous limit cycle, helps astronomers explain transient outbursts across a wide range of systems, from protoplanetary disks around young stars, to dwarf novae — where the central object is a white dwarf star — and even bright emission from supermassive black holes in the hearts of distant galaxies.

It is estimated that our galaxy must harbor some 100 million stellar-mass black holes. Most of these are invisible to us, and only about a dozen have been identified.

Swift discovers about 100 bursts per year. The Burst Alert Telescope detects GRBs and other events and accurately determines their positions on the sky. Swift then relays a 3 arcminute position estimate to the ground within 20 seconds of the initial detection, enabling ground-based observatories and other space observatories the chance to observe the event as well. The Swift spacecraft itself “swiftly” –in less than approximately 90 seconds — and autonomously repoints itself to bring the burst location within the field of view of the sensitive narrow-field X-ray and UV/optical telescopes to observe the afterglow and gather data.

Source: NASA

Blowing a Super-duper Celestial Bubble

Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m. Zoom by John Williams/TerraZoom using Zoomify

When NASA combines images from different telescopes, they create dazzling scenes of celestial wonder and in the process we learn a few more things. Behold this wonder of combined light, known as LHA 120-N 44, or N 44 for short. Zoom into the scene using the toolbar at the bottom of the image. Click the farthest button on the right of the toolbar to see this wonder in full-screen. (Hint: press the “Esc” key to get back to work)

Continue reading “Blowing a Super-duper Celestial Bubble”

Astronomers Discover Milky Way’s Hot Halo

Artist's impression of the huge halo of hot gas surrounding the Milky Way Galaxy. Credit: NASA

Artist’s illustration of a hot gas halo enveloping the Milky Way and Magellanic Clouds (NASA/CXC/M.Weiss; NASA/CXC/Ohio State/A.Gupta et al.)

Our galaxy — and the nearby Large and Small Magellanic Clouds as well — appears to be surrounded by an enormous halo of hot gas, several hundred times hotter than the surface of the Sun and with an equivalent mass of up to 60 billion Suns, suggesting that other galaxies may be similarly encompassed and providing a clue to the mystery of the galaxy’s missing baryons.

The findings were reported today by a research team using data from NASA’s Chandra X-ray Observatory.

In the artist’s rendering above our Milky Way galaxy is seen at the center of a cloud of hot gas. This cloud has been detected in measurements made with Chandra as well as with the European Space Agency’s XMM-Newton space observatory and Japan’s Suzaku satellite. The illustration shows it to extend outward over 300,000 light-years — and it may actually be even bigger than that.

While observing bright x-ray sources hundreds of millions of light-years distant, the researchers found that oxygen ions in the immediate vicinity of our galaxy were “selectively absorbing” some of the x-rays. They were then able to measure the temperature of the halo of gas responsible for the absorption.

The scientists determined the temperature of the halo is between 1 million and 2.5 million kelvins — a few hundred times hotter than the surface of the Sun.

But even with an estimated mass anywhere between 10 billion and 60 billion Suns, the density of the halo at that scale is still so low that any similar structure around other galaxies would escape detection. Still, the presence of such a large halo of hot gas, if confirmed, could reveal where the missing baryonic matter in our galaxy has been hiding — a mystery that’s been plaguing astronomers for over a decade.

Unrelated to dark matter or dark energy, the missing baryons issue was discovered when astronomers estimated the number of atoms and ions that would have been present in the Universe 10 billion years ago. But current measurements yield only about half as many as were present 10 billion years ago, meaning somehow nearly half the baryonic matter in the Universe has since disappeared.

Recent studies have proposed that the missing matter is tied up in the comic web — vast clouds and strands of gas and dust that surround and connect galaxies and galactic clusters. The findings announced today from Chandra support this, and suggest that the missing ions could be gathered around other galaxies in similarly hot halos.

Even though previous studies have indicated halos of warm gas existing around our galaxy as well as others, this new research shows a much hotter, much more massive halo than ever detected.

“Our work shows that, for reasonable values of parameters and with reasonable assumptions, the Chandra observations imply a huge reservoir of hot gas around the Milky Way,” said study co-author Smita Mathur of Ohio State University in Columbus. “It may extend for a few hundred thousand light-years around the Milky Way or it may extend farther into the surrounding local group of galaxies. Either way, its mass appears to be very large.”

Read the full news release from NASA here, and learn more about the Chandra mission here. (The team’s paper can be found on arXiv.org.)

Inset image: NASA’s Chandra spacecraft (NASA/CXC/NGST)

NOTE: the initial posting of this story mentioned that this halo could be dark matter. That was incorrect and not implied by the actual research, as dark matter is non-baryonic matter while the hot gas in the halo is baryonic — i.e., “normal” —  matter. Edited. – JM

A Star’s Dying Scream May Be a Beacon for Physics

When a star suffered an untimely demise at the hands of a hidden black hole, astronomers detected its doleful, ululating wail — in the key of D-sharp, no less — from 3.9 billion light-years away. The resulting ultraluminous X-ray blast revealed the supermassive black hole’s presence at the center of a distant galaxy in March of 2011, and now that information could be used to study the real-life workings of black holes, general relativity, and a concept first proposed by Einstein in 1915.

Within the centers of many spiral galaxies (including our own) lie the undisputed monsters of the Universe: incredibly dense supermassive black holes, containing the equivalent masses of millions of Suns packed into areas smaller than the diameter of Mercury’s orbit. While some supermassive black holes (SMBHs) surround themselves with enormous orbiting disks of superheated material that will eventually spiral inwards to feed their insatiable appetites — all the while emitting ostentatious amounts of high-energy radiation in the process — others lurk in the darkness, perfectly camouflaged against the blackness of space and lacking such brilliant banquet spreads. If any object should find itself too close to one of these so-called “inactive” stellar corpses, it would be ripped to shreds by the intense tidal forces created by the black hole’s gravity, its material becoming an X-ray-bright accretion disk and particle jet for a brief time.

Such an event occurred in March 2011, when scientists using NASA’s Swift telescope detected a sudden flare of X-rays from a source located nearly 4 billion light-years away in the constellation Draco. The flare, called Swift J1644+57, showed the likely location of a supermassive black hole in a distant galaxy, a black hole that had until then remained hidden until a star ventured too close and became an easy meal.

See an animation of the event below:

The resulting particle jet, created by material from the star that got caught up in the black hole’s intense magnetic field lines and was blown out into space in our direction (at 80-90% the speed of light!) is what initially attracted astronomers’ attention. But further research on Swift J1644+57 with other telescopes has revealed new information about the black hole and what happens when a star meets its end.

(Read: The Black Hole that Swallowed a Screaming Star)

In particular, researchers have identified what’s called a quasi-periodic oscillation (QPO) embedded inside the accretion disk of Swift J1644+57. Warbling at 5 mhz, in effect it’s the low-frequency cry of a murdered star. Created by fluctuations in the frequencies of X-ray emissions, such a source near the event horizon of a supermassive black hole can provide clues to what’s happening in that poorly-understood region close to a black hole’s point-of-no-return.

Einstein’s theory of general relativity proposes that space itself around a massive rotating object — like a planet, star, or, in an extreme instance, a supermassive black hole — is dragged along for the ride (the Lense-Thirring effect.) While this is difficult to detect around less massive bodies a rapidly-rotating black hole would create a much more pronounced effect… and with a QPO as a benchmark within the SMBH’s disk the resulting precession of the Lense-Thirring effect could, theoretically, be measured.

If anything, further investigations of Swift J1644+57 could provide insight to the mechanics of general relativity in distant parts of the Universe, as well as billions of years in the past.

See the team’s original paper here, lead authored by R.C. Reis of the University of Michigan.

Thanks to Justin Vasel for his article on Astrobites.

Image: NASA. Video: NASA/GSFC