Too WISE to be Fooled by Dust: Over 300 New Star Clusters Discovered

A new study by Brazilian astronomers details the discoveries of some 300 new star clusters using the WISE space telescope (credit NASA/JPL-Caltech/UCLA).

Brazilian astronomers have discovered some 300+ star clusters that were largely overlooked owing to sizable obscuration by dust.  The astronomers, from the Universidade Federal do Rio Grande do Sul, used data obtained by NASA’s WISE (Wide-Field Infrared Survey Explorer) space telescope to detect the clusters.

“WISE is a powerful tool to probe … young clusters throughout the Galaxy”, remarked the group.  The clusters discovered were previously overlooked because the constituent stars are deeply embedded in their parent molecular cloud, and are encompassed by dust.   Stars and star clusters can emerge from such environments.

The group added that, “The present catalog of new clusters will certainly become a major source for future studies of star cluster formation.”   Indeed, WISE is well-suited to identify new stars and their host clusters because infrared radiation is less sensitive to dust obscuration.  The infrared part of the electromagnetic spectrum is sampled by WISE.

An optical (DSS) and infrared (WISE) image of the same field.  A cluster of young stars is not apparent in the optical (left) image owing to obscuration by dust.  However, a young star cluster is apparent in the right image because the dust reradiates the absorbed radiation in the infrared regime.  The new study highlights the discovery of numerous  star clusters discovered using infrared (WISE) data (image credit: DSS/NASA and assembly by D. Majaess).
An optical (DSS) and infrared (WISE) image of the same field. A cluster of young stars is not apparent in the optical (left) image owing to obscuration by dust.  However, a young star cluster is readily apparent in the right image because dust obscuration is significantly less at infrared wavelengths. A new study by a team of astronomers highlights the discovery of numerous star clusters using WISE data (image credit: DSS/NASA/IPAC and assembly by D. Majaess).

Historically, new star clusters were often identified while inspecting photographic plates imaged at (or near) visible wavelengths (i.e., the same wavelengths sampled by the eye).  Young embedded clusters were consequently under-sampled since the amount of obscuration by dust is wavelength dependent.  As indicated in the figure above, the infrared observations penetrate the dust by comparison to optical observations.

The latest generation of infrared survey telescopes (e.g., Spitzer and WISE) are thus excellent instruments for detecting clusters embedded in their parent cloud, or hidden from detection because of dust lying along the sight-line.  The team notes that, “The Galaxy appears to contain 100000 open clusters, but only some 2000 have established astrophysical parameters.”  It is hoped that continued investigations using WISE and Spitzer will help astronomers minimize that gap.

The discoveries are described in a new study by D. Camargo, E. Bica, and C. Bonatto that is entitled “New Glactic embedded cluster and candidates from a WISE survey“.   The study has been accepted for publication, and will appear in a forthcoming issue of the journal New Astronomy.  For more information on Galactic star clusters see the Dias et al. catalog, the WEBDA catalog, or the Star Clusters Young & Old Newsletter.  Thanks to K. MacLeod for the title suggestion.

The WISE (Wide-field Infrared Survey Explorer) space telescope was used to discover numerous new star clusters (image credit: NASA)(.
The WISE (Wide-field Infrared Survey Explorer) space telescope was used to discover numerous star clusters (image credit: NASA).

 

UPDATE: NASA Senior Review Declines WISE Spacecraft Data Usage Idea

Kevin Luhman discovered the brown dwarf pair in data from NASA's Wide-field Infrared Survey Explorer (WISE; artist's impression). Image: NASA/JPL-Caltech
Artist's impression of the WISE satellite

CORRECTION: This story corrects a previously stated misinterpretation of the NASA Senior Report that the WISE spacecraft itself was denied an extension. 

NASA has denied funding to an idea to use NEOWISE image exposures for additional processing for science purposes, according to Amy Mainzer, the deputy project scientist for the  Wide-field Infrared Survey Explorer (WISE) at NASA’s Jet Propulsion Laboratory. The project, called MaxWISE, was supposed to run for three years and to use NEOWISE data for other purposes.

“We were hoping it would be possible to combine data from the prime mission, with the NEO mission, to look at
things that vary on different timescales,” Mainzer said in an interview Friday (May 16) with Universe Today.

Its goals would have included measuring the motions and distances for stars and brown dwarfs near the sun, examining variable stars and setting up a “transient detection and alerts program” for certain astronomical phenomena.

This is a mosaic of the images covering the entire sky as observed by the Wide-field Infrared Survey Explorer (WISE), part of its All-Sky Data Release. Image Credit: NASA/JPL-Caltech/UCLA
This is a mosaic of the images covering the entire sky as observed by the Wide-field Infrared Survey Explorer (WISE), part of its All-Sky Data Release. Image Credit: NASA/JPL-Caltech/UCLA

In its review, the panel said it was “concerned that the proposed transient detection program would yield little science considering how much it cost”, and approved the program at half of the budgetary levels originally requested. NASA, however, wrote that it would decline the proposal altogether.

“The MaxWISE proposal was recommended for selection by the senior review. However, the only source of funding would be to displace funding from higher rated operating missions in the senior review. Due to constrained budget conditions, the MaxWISE proposal is declined,” NASA wrote in its response.

“It’s tremendously disappointing,” Mainzer said of the decision, adding  it is a tough NASA budget environment overall. She is encouraging people to get in touch with their elected representatives if they want to see changes.

Other approved missions included a Kepler space telescope repurposing and extended operations for the Hubble and Chandra telescopes, among other missions. Spitzer officials were declined their request and asked to send a revised budget for consideration in fiscal 2016 negotiations.

WISE J104915.57-531906 as seen in NASA’s All-WISE survey (centered) and resolved to show its binary nature by the Gemini Observatory (inset). (Credit: NASA/JPL/Gemini Observatory/AURA/NSF).
WISE J104915.57-531906 as seen in NASA’s All-WISE survey (centered) and resolved to show its binary nature by the Gemini Observatory (inset). (Credit: NASA/JPL/Gemini Observatory/AURA/NSF).

After its launch in 2009 and successful prime mission, WISE was put into hibernation in 2011 before being turned on again last summer to look for asteroids that could pose a threat to Earth, and possibly to participate in NASA’s asteroid mission by looking for a space rock that could be captured and explored.

NEOWISE is expected to run until about 2016 or 2017, depending on how active the Earth’s atmosphere becomes. Since the spacecraft is in a relatively low orbit of 311 miles (500 km), if the sun’s activity increases molecule interactions in the atmosphere and expands it, the spacecraft can be somewhat twisted out of its orbit. Also, more scattering can occur. Both would make it harder for the spacecraft to carry out its mission, Mainzer said.

In the meantime, amateur astronomers can follow along with one of NEOWISE’s recent discoveries: the spacecraft recently found a fairly large near-Earth asteroid, about 1.24 miles to 1.86 miles (2 to 3 km) in size. It’s called 2014 JH 57 and you can get more orbital parameters on it at this page after typing in “2014 JH57” (no quotes) into the search bar.

You can read more about the senior review here.

It’s Freezing on the Surface of this Nearby Star-like Object

This artist's conception shows the object named WISE J085510.83-071442.5, the coldest known brown dwarf. Image credit: Penn State University/NASA/JPL-Caltech

Our stellar neighborhood just got a little busier … and a little colder.

A brown dwarf that’s as frosty as the Earth’s North Pole has been discovered lurking incredibly close to our Solar System. Astronomer Keven Luhman from Pennsylvania State University used NASA’s Wide-field Infrared Survey Explorer (WISE) and the Spitzer Space Telescope to pinpoint the object’s temperature and distance. This is the coldest brown dwarf found so far, and it’s a mere 7.2 light-years away, making it the seventh closest star-like object to the Sun.

“It is very exciting to discover a new neighbor of our Solar System that is so close,” said Luhman in a press release.

Brown dwarfs emerge when clouds of gas and dust collapse. But unlike stars, they never grow dense enough or burn hot enough to ignite nuclear fusion in their cores. They live their lives less massive than stars, but more massive than gas giants. So they burn hot at first, then cool over time. And this newly discovered brown dwarf is as cold as ice. Literally.

WISE surveyed the entire sky twice in its short 14-month lifetime, looking at cooler objects, which radiate in infrared light (but often remain invisible in visible light). It saw cold asteroids, dust clouds, proto-planetary disks, distant galaxies and hundreds of brown dwarfs.

But one of these objects — dubbed WISE J085510.83-071442.5 — was moving rapidly, suggesting it was extremely close to the Solar System. All stars orbit around the Milky Way, with apparent motions seen on the timescale of hundreds of years. Stars close to the Sun, however, can be seen to make the slightest of movements on the timescale of just a few years. This object appeared to move in just a few months.

 This animation shows the coldest brown dwarf yet seen, and the fourth closest system to our sun. Called WISE J085510.83-071442.5, this dim object was discovered through its rapid motion across the sky. It was first seen in two infrared images taken six months apart in 2010 by NASA's Wide-field Infrared Survey Explorer, or WISE (see orange triangles). Two additional images of the object were taken with NASA's Spitzer Space Telescope in 2013 and 2014 (green triangles). All four images were used to measure the distance to the object -- 7.2 light-years -- using the parallax effect. › See animation The Spitzer data were used to show that the body is as cold as the North Pole (or between minus 54 and 9 degrees Fahrenheit, which is minus 48 to minus 13 degrees Celsius). Image credit: NASA/JPL-Caltech/Penn State
Click on the image above to see an animation of WISE J085510.83-071442.5. It was first seen in two infrared images taken six months apart in 2010 by WISE (see orange triangles). Two additional images of the object were taken with NASA’s Spitzer Space Telescope in 2013 and 2014 (green triangles). Image credit: NASA/JPL-Caltech/Penn State

After first spotting this wacky object in the WISE data, Luhman analyzed additional images taken with the Spitzer Space Telescope and the Gemini South Pole Telescope in Chile. The combined detections taken from different positions around the Sun enabled the measurement of the objects parallax — the apparent position of the object against a background set of stars as seen along multiple lines of sight — allowing Luhman to determine the objects distance.

Spitzer’s additional observations helped pin down the objects chilly temperature, which can be determined based on how much light it gives off in different colors. Like a flame, the hottest part is blue, while the coldest part is red. Luhman found the brown dwarfs temperature to be between –54° and 9° Fahrenheit (–48° to –13° Celsius). Previous record-holders for the coldest brown dwarfs were about room temperature.

“It is remarkable that even after many decades of studying the sky, we still do not have a complete inventory of the Sun’s nearest neighbors,” said Michael Werner from NASA’s Jet Propulsion Laboratory. “This exciting new result demonstrates the power of exploring the universe using new tools, such as the infrared eyes of WISE and Spitzer.”

With a stretch of the imagination and advanced technology, it’s possible that other cooler objects, be them brown dwarfs of even rogue exoplanets, are yet closer to the Sun.

The paper will be published in the Astrophysics Journal and is available for download here.

Still No Sign Of ‘Planet X’ In Latest NASA Survey

No "Planet X" was found in a survey of the sky using NASA's Wide-Field Infrared Survey Explorer. This picture, which comes from the same dataset, shows a recently discovered star (in red) called WISEA J204027.30+695924.1. Credit: DSS/NASA/JPL-Caltech

It’s one of those rumors that just won’t quiet down — a large planet lurking at the solar system’s edge. Back in the 1840s, when Neptune was discovered, its orbit seemed to be a little “off” from what was expected.

Some astronomers of the time said that was caused by a planet further out. Although the Neptune perturbations are now ascribed to observational errors, the tale of Planet X continues, and has sometimes even been linked with doomsday. (See this past Universe Today story for the full tale.)

NASA’s latest survey puts even less credence in that theory. A scan of the sky showed nothing Saturn’s size or bigger at a distance of 10,000 Earth-sun distances, or astronomical units. Nothing bigger than Jupiter exists as far as 26,000 AU. (To put that in perspective, Pluto is 40 AU from the sun.)

“The outer solar system probably does not contain a large gas giant planet, or a small, companion star,” stated Kevin Luhman of the Center for Exoplanets and Habitable Worlds at Penn State University, author of a paper in the Astrophysical Journal describing the results.

Astronomers used information from NASA’s Wide-Field Infrared Survey Explorer, which did two full-sky scans in 2010 and 2011 to look at asteroids, stars and galaxies. NASA’s AllWISE program, released in November 2013, allows astronomers to find moving objects by comparing the two surveys.

Kevin Luhman discovered the brown dwarf pair in data from NASA's Wide-field Infrared Survey Explorer (WISE; artist's impression). Image: NASA/JPL-Caltech
Artist’s impression of the WISE satellite

A second study of the data found other objects further out in space — 3,525 stars and brown dwarfs (objects just below the threshold for fusion) within 500 light-years of the sun.

“We’re finding objects that were totally overlooked before,” stated Davy Kirkpatrick of NASA’s Infrared and Processing Analysis Center at the California Institute of Technology, who led the second paper.

Both papers will be published in the Astrophysical Journal.

Source: NASA

NEOWISE Spots a “Weirdo” Comet

Infrared image of comet NEOWISE (C/2014 C3). Credit: NASA/JPL-Caltech

NASA’s NEOWISE mission — formerly known as just WISE — has identified the first comet of its new near-Earth object hunting career… and, according to mission scientists, it’s a “weirdo.”

In its former life NASA’s WISE (Wide-field Infrared Survey Explorer) spacecraft scanned the entire sky in infrared wavelengths. It helped discover the galaxy’s coldest stars, the Universe’s brightest galaxies, and some of the darkest asteroids lurking in the main asteroid belt between Mars and Jupiter… as well as closer in to Earth’s neck of the woods.

After exhausting its supply of liquid coolant needed to shield itself from its own radiating heat, in 2011 WISE was put into a state of hibernation. It was awoken last year and rebranded NEOWISE, and set upon the task of locating unknown objects with orbits in the proximity of Earth’s.

Kevin Luhman discovered the brown dwarf pair in data from NASA's Wide-field Infrared Survey Explorer (WISE; artist's impression). Image: NASA/JPL-Caltech
Artist’s impression of the WISE satellite

To date several new asteroids have already been found by NEOWISE, and on February 14, 2014, it spotted its first comet.

“We are so pleased to have discovered this frozen visitor from the outermost reaches of our solar system,” said Amy Mainzer, NEOWISE principal investigator at JPL. “This comet is a weirdo — it is in a retrograde orbit, meaning that it orbits the sun in the opposite sense from Earth and the other planets.”

Designated “C/2014 C3 (NEOWISE),” the comet was 143 million miles (230 million km) away in the image above — a composite made from six infrared exposures. That’s 585 times the distance to the Moon, or about the average distance between the Earth and Mars.

The tail of the comet NEOWISE extends about 25,000 miles (40,000 km) to the right in the image.

Overall, C/2014 C3 (NEOWISE) was spotted six times before it moved out of range of the spacecraft’s view. The comet has a highly-eccentric 20-year orbit that takes it high above the plane of the Solar System and out past the orbit of Jupiter. Technically, with a perihelion distance greater than 1.3 AU, comet C/2014 C3 does not classify as a near-Earth object (and its orbit does not intersect Earth’s.) But it’s still good to know that NEOWISE is looking out for us.

Read more on JPL’s NEOWISE site here, and see details on the comet’s orbit on the Minor Planet Center’s website here and from JPL’s Small-Body Database here.

Source: NASA/JPL

For Valentine’s Day, Enjoy These Hearts On Earth, Mars And Other Places

A heart-shaped feature in the Arabia Terra region of Mars taken by NASA's Mars Reconnaissance Orbiter. Image Credit: NASA/JPL-Caltech/MSSS.

While we’re unsure about the status of chocolates and flowers in locations far beyond Earth, there certainly is no lack of hearts for us to look at to enjoy Valentine’s Day. If you look at enough geologic features or gas clouds, statistically some of them will take on shapes that we recognize (such as faces).

Below, we’ve collected some hearts on Mars and other places in the universe. Have we missed any? Share other astronomy hearts in the comments!

This heart-shaped feature on Mars "is actually a pit formed by collapse within a straight-walled trough known in geological terms as a graben," wrote Malin Space Systems in 1999. Picture taken by Mars Global Surveyor. Credit: Malin Space Science Systems, MGS, JPL, NASA
This heart-shaped feature on Mars “is actually a pit formed by collapse within a straight-walled trough known in geological terms as a graben,” wrote Malin Space Systems in 1999. Picture taken by Mars Global Surveyor. Credit: Malin Space Science Systems, MGS, JPL, NASA
A heart-shaped mesa captured by Mars Global Surveyor in 1999, in the Promethei Rupes region. Credit: Malin Space Science Systems, MGS, JPL, NASA
A heart-shaped mesa captured by Mars Global Surveyor in 1999, in the Promethei Rupes region. Credit: Malin Space Science Systems, MGS, JPL, NASA
The Heart and Soul nebulae in an infrared mosaic from NASA's Wide-field Infrared Survey Explorer (WISE). It is located about about 6,000 light-years from Earth. Credit: NASA/JPL-Caltech/UCLA
The Heart and Soul nebulae in an infrared mosaic from NASA’s Wide-field Infrared Survey Explorer (WISE). It is located about about 6,000 light-years from Earth. Credit: NASA/JPL-Caltech/UCLA

 

 

 

How Can We Find Killer Asteroids?

How Can We Find Killer Asteroids?

On the morning of February 15, 2013, people in western Russia were dazzled by an incredibly bright meteor blazing a fiery contrail across the sky. A few minutes later a shockwave struck, shaking the buildings and blowing out windows. 1,500 people went to the hospital with injuries from shattered glass. This was the Chelyabinsk meteor, a chunk of rock that struck the atmosphere going almost 19 kilometers per second. Astronomers estimate that it was 15-20 meters across and weighed around 12,000 metric tonnes.

Here’s the crazy part. It was the largest known object to strike the atmosphere since the Tunguska explosion in 1908. Catastrophic impacts have shaped the evolution of life on Earth. Once every 65 million years or so, there’s an impact so destructive, it wipes out almost all life on Earth. The bad news is the Chelyabinsk event was a surprise. The asteroid came out of nowhere. We need to find all the potential killer asteroids, and understand what risks we face.

“I’m Ned Wright…”

That’s Dr. Ned Wright. He’s a professor of physics and astronomy at UCLA, and the Primary Investigator for the Wide-field Infrared Survey Explorer mission; a space telescope that looks for low temperature objects in the infrared spectrum.

“I think the best way to protect the Earth from asteroids is to get out and look very assiduously to find all the hazardous asteroids. Although astronomers have been finding and cataloging asteroids for decades, we still only have a fraction of the dangerous asteroids tracked. The large continent destroyers have mostly been found, but there’s a whole class of smaller, city killers out there, and they’re almost entirely unknown. There are… these dark asteroids that may not be the most dominant part of the population but they certainly can be a very hazardous subset, it’s important to do the observations in the infrared. So you actually, instead of looking for the ones that reflect the most light, you look for the ones that have the biggest area and therefore the ones that are the heaviest and can do the most damage. And so, I think that an infrared survey is the way to go.”

“In the infrared wavelengths, we can find these objects because they’re large, not because they’re bright. And to really do this right, we need a space-based infrared observatory capable of surveying vast areas of the sky, searching for anything moving.”

The WISE mission has been offline for a few years, but WISE is actually being reactivated right now to look for more Near Earth Objects, so we’re currently cooled down to 93 K, and when we get to 73 K, which is where we were when we turned off in 2011 we’ll probably be able to go out and find more Near Earth Objects.

Note: this interview was recorded in November, 2013. WISE resumed operations in December 23, 2013

Kevin Luhman discovered the brown dwarf pair in data from NASA's Wide-field Infrared Survey Explorer (WISE; artist's impression). Image: NASA/JPL-Caltech
Artist’s impression of the WISE satellite

But to really find the vast majority of dangerous asteroids, you need a specialized mission. One proposal is the Near Earth Asteroid Camera, or NEOCam because it’d be much better to have a telescope that was slightly colder than the 73 K WISE is with coolant, and you can do that by getting away from the Earth. and so the NEOcam telescope is designed to go a million and a half kilometers from the Earth and therefore it would be quite cold, about 35 K and at that temperature, it can operate longer into the infrared and do a very sensitive survey for asteroids.

NEOCam is just one idea. There’s also the Sentinel proposal from B612 Foundation. It’s also an infrared survey and it would go into an orbit like Venus’ orbit, so it would be hundreds of millions of km away from Earth, but not orbiting around Venus, because that would be too hot as well and then with an infrared telescope, it would survey for asteroids.

NEOCam and Sentinel would operate for years, scanning the sky in the infrared to find all of the really hazardous asteroids. You wouldn’t be able to necessarily find the ones the size of the one that hit Chelyabinsk, and so that broke some windows, but it didn’t kill people, didn’t knock buildings down. So that’s definitely a hazard, but not the city destroying hazard that a 100 meter diameter asteroid would be.

We live in a cosmic shooting gallery. Rocks from space impact the Earth all the time, our next dangerous asteroid is out there, somewhere. Let’s build a space-based infrared survey mission so we can find it, before it finds us.

Nearby Brown Dwarf System May Harbor Closest Exoplanet to Earth

WISE J104915.57-531906 as seen in NASA’s All-WISE survey (centered) and resolved to show its binary nature by the Gemini Observatory (inset). (Credit: NASA/JPL/Gemini Observatory/AURA/NSF).

In 2012 astronomers announced the discovery of an Earth-like planet circling our nearest neighbor, Alpha Centauri B, a mere 4.3 light-years away. But with such a discovery comes heated debate. A second group of astronomers was unable to confirm the exoplanet’s presence, keeping the argument unresolved to date.

But not to worry. One need only look 2.3 light-years further to see tantalizing — although yet unconfirmed — evidence of an exoplanet circling a pair of brown dwarfs: objects that aren’t massive enough to kick-off nuclear fusion in their cores. There just may be an exoplanet in the third closest system to our Sun.

Astronomers only discovered the system last year when the brown dwarfs were spotted in data from NASA’s Wide-field Infrared Explorer (WISE). Check out a past Universe Today article on the discovery here. They escaped detection for so long because they are located in the galactic plane, an area densely populated by stars, which are far brighter than the brown dwarfs.

Henri Boffin at the European Southern Observatory led a team of astronomers on a mission to learn more about these newly found dim neighbors.  The group used ESO’s Very Large Telescope (VLT) at Paranal in Chile to perform astrometry, a technique used to measure the position of the objects precisely. This crucial data would allow them to make a better estimate of the distance to the objects as well as their orbital period.

Boffin’s team was first able to constrain their masses, finding that one brown dwarf weighs in at 30 times the mass of Jupiter and the other weighs in at 50 times the mass of Jupiter. These light-weight objects orbit each other slowly, taking about 20 years.

But their orbits didn’t map out perfectly — there were slight disturbances, suggesting that something was tugging on these two brown dwarfs. The likely culprit? An exoplanet — at three times the weight of Jupiter — orbiting one or even both of the objects.

“The fact that we potentially found a planetary-mass companion around such a very nearby and binary system was a surprise,” Boffin told Universe Today.

The next step will be to monitor the system closely in order to verify the existence of a planetary-mass companion. With a full year’s worth of data it will be relatively straightforward to remove the signal caused by the exoplanet.

So far only eight exoplanets have been discovered around brown dwarfs. If confirmed, this planet will be the first to be discovered using astrometry.

“Once the companion is confirmed, this will be an ideal target to image using the upcoming SPHERE instrument on the VLT,” Boffin said. This instrument will allow astronomers to directly image planets close to their host star — a difficult technique worth the challenge as it reveals a wealth of information about the planet.

Once confirmed, this planet will stand as the closest exoplanet to the Sun, until the debate regarding Alpha Centauri Bb is resolved.

The paper has been accepted for publication as an Astronomy & Astrophysics Letter and is available for download here. For more information on Alpha Centauri Bb please read a paper available here and published in the Astrophysical Journal.

This Picture Symbolizes The Changing Mission Of One Plucky Spacecraft

The Helix nebula is visible in the center of this image, surrounded by tracks of asteroids that are much closer to Earth (yellow dots). Click on the image to see them. The streaks you see are from satellites or cosmic rays. Credit: NASA/JPL-Caltech/UCLA

Besides being a darn pretty picture of the Helix nebula, this snapshot is a bit of symbolism for NASA. The spacecraft that nabbed this view is called the Wide-field Infrared Survey Explorer, or WISE. If you look very carefully — you may have to click on the picture for a closer view — you can see little dots showing the paths of asteroids in the picture. (The streaks are cosmic rays and satellites.)

WISE has an interesting history. It began as a telescope seeking secrets of the universe in infrared light, but ran out of coolant in 2010 and was repurposed for asteroid searching under the NEOWISE mission. It wrapped up its mission, was put into hibernation in February 2011, then reactivated this August to look for asteroids again for at least the next three years. You can see some pictures and data WISE collected during its mission below the jump.

It’s a nice way, NASA said, to celebrate the fourth anniversary of WISE’s launch. “WISE is the spacecraft that keeps on giving,” said Ned Wright of UCLA, who was the principal investigator of WISE before it transitioned into NEOWISE.

New results from NASA's NEOWISE survey find that more potentially hazardous asteroids, or PHAs, are closely aligned with the plane of our solar system than previous models suggested. Image credit: NASA/JPL-Caltech
Results from NASA’s NEOWISE survey find that more potentially hazardous asteroids, or PHAs, are closely aligned with the plane of our solar system than previous models suggested. Image credit: NASA/JPL-Caltech
This enormous section of the Milky Way galaxy is a mosaic of images from NASA's Wide-field Infrared Survey Explorer, or WISE. The constellations Cassiopeia and Cepheus are featured in this 1,000-square degree expanse. Image credit: NASA/JPL-Caltech/UCLA
This enormous section of the Milky Way galaxy is a mosaic of images from NASA’s Wide-field Infrared Survey Explorer, or WISE. The constellations Cassiopeia and Cepheus are featured in this 1,000-square degree expanse. Image credit: NASA/JPL-Caltech/UCLA
This oddly colorful nebula is the supernova remnant IC 443 as seen by WISE. Image credit: NASA/JPL-Caltech/UCLA
This oddly colorful nebula is the supernova remnant IC 443 as seen by WISE. Image credit: NASA/JPL-Caltech/UCLA

Galaxy May Host ‘Death Spiral’ Of Two Black Holes Becoming One

Artist's conception of two black holes gravitationally bound to each other. Credit: NASA

Two black holes in the middle of a galaxy are gravitationally bound to each other and may be starting to merge, according to a new study.

Astronomers came to that conclusion after studying puzzling behavior in what is known as WISE J233237.05-505643.5, a discovery that came from NASA’s Wide-field Infrared Survey Explorer (WISE). Follow-up studies came from the Australian Telescope Compact Array and the Gemini South telescope in Chile.

“We think the jet of one black hole is being wiggled by the other, like a dance with ribbons,” stated research leader Chao-Wei Tsai of NASA’s Jet Propulsion Laboratory. “If so, it is likely the two black holes are fairly close and gravitationally entwined.”

“The dance of these black hole duos starts out slowly, with the objects circling each other at a distance of about a few thousand light-years,’ NASA added in a press release. “So far, only a few handfuls of supermassive black holes have been conclusively identified in this early phase of merging. As the black holes continue to spiral in toward each other, they get closer, separated by just a few light-years. ”

You can read more details of the find at a press release here, or at this Arxiv paper.