Danny – First Atlantic Hurricane of 2015 as Seen from Space Station by Scott Kelly

NASA Astronaut Scott Kelly took this picture of Hurricane Danny on August 20 at 6 a.m. EDT from aboard the International Space Station. Credits: NASA

Hurricane Danny, the first Atlantic Ocean hurricane of the 2015 season has been caught on camera by NASA astronaut Scott Kelly, in a beautiful image taken on Thursday, August 20 at 6 a.m. EDT from his glorious perch aboard the International Space Station (ISS).

Poking majestically down at the sprawling hurricane is the space stations Canadian-built robotic arm that will be used by Kelly in a few days to grapple Kounotori, the Japanese cargo ship launched earlier this week and berth it at a docking port.

Kelly is nearly five months into his year-long stay aboard the ISS and is a prolific photographer of the natural wonders of our home planet.

“Hurricane Danny. Keeping an eye on you from the International Space Station. Looks like you’re 1st in the Atlantic this year. Stay safe below! #YearInSpace,” wrote Kelly on his Facebook and twitter pages.

Danny had risen to a Category 3 hurricane by Friday afternoon, August 21, with winds over 115 mph and was moving westward in the Central Atlantic Ocean towards the Leeward Islands in the Caribbean.

By 11 a.m. EDT (1500 UTC) on Friday, August 21, the eye of Hurricane Danny was located near latitude 14.0 North, longitude 48.2 West, according to NASA. The center of Danny was about 930 miles (1,195 km) east of the Leeward Islands. With maximum sustained winds of near 105 mph (165 kph), Danny was a Category 2 hurricane on the Saffir-Simpson Hurricane Wind Scale.

By 8:00 p.m. Friday evening, Friday, the National Hurricane Center said Danny was located over the central tropical Atlantic Ocean about 800 miles east of the Leeward Islands.

Late this evening at 11 p.m., the National Hurricane Center said it had weakened slightly back to a Category 2 storm with maximum winds of 110 mph and was located at 14.8°N and 49.8°W while moving west northwest at 10 mph.

The NASA GOES-East animation below combines visible and infrared imagery showing Hurricane Danny’s movement in the eastern and central Atlantic Ocean from Aug. 18 to 21, 2015.

Video caption: Hurricane Danny Seen By GOES-East. This animation of visible and infrared imagery of Hurricane Danny in the Central Atlantic Ocean was taken from NOAA’s GOES-East satellite from Aug. 18 to 21. Credits: NASA/NOAA GOES Project

Forecasters with the National Hurricane Center think it may weaken over the next few days as it heads towards the Caribbean islands.

“Vertical shear is expected to increase further during the next couple of days, which should allow drier air in the surrounding environment to penetrate into Danny’s circulation. Therefore,there is no change in the thinking that Danny should weaken as it approaches and moves across the Leeward Islands and the Greater Antilles during the forecast period.”

Danny could reach Puerto Rico by Monday in a weakened state.

Although it’s still far away from the US, it’s not expected to impact the East Coast but that could change.

If Danny were to take aim at the US, it could impact plans to launch the Air Force MUOS-4 satellite on Aug. 31 from Cape Canaveral Air Force Station by United Launch Alliance (ULA).

Here’s a map showing the current location:

Hurricane Danny location on Aug. 21, 2015. Credit: National Hurricane Center
Hurricane Danny location on Aug. 21, 2015. Credit: National Hurricane Center

On Aug. 19, NASA’s Global Precipitation Measurement (GPM) mission core satellite passed over Danny and analyzed the structure of its rainfall, as seen in this image.

On Aug. 19, 2015 GPM saw Danny's rain structure was still asymmetric as noted by the large rain band (identified by the green arc indicating moderate rain) being located mainly on the eastern side of the storm. Within this rain band, GPM detected rain rates of up to 73.9 mm/hour (shown in darker red).Credits: SSAI/NASA, Hal Pierce
On Aug. 19, 2015 GPM saw Danny’s rain structure was still asymmetric as noted by the large rain band (identified by the green arc indicating moderate rain) being located mainly on the eastern side of the storm. Within this rain band, GPM detected rain rates of up to 73.9 mm/hour (shown in darker red).Credits: SSAI/NASA, Hal Pierce

A research team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, created a 3-D rendering of Danny using data from the GPM DPR (Dual-frequency Precipitation Radar) instrument.

“GPM showed that Danny was still in the process of becoming organized. The rain structure was still very asymmetric as noted by a large rain band being located mainly on the eastern side of the storm. Within this rain band, GPM detected rain rates of up to 73.9 mm/hour. At the time of this image, Danny was still a minimal tropical storm with sustained winds estimated at 50 mph by the National Hurricane Center (NHC),” said officials.

And dont forget that you can watch Commander Scott Kelly and his five international crew mates on a regular basis as they soar overhead. Just click on NASA’s Spot the Station link and plug in your location.

ISS crosses the Big Dipper over NJ.  Credit: Ken Kremer/kenkremer.com
ISS crosses the Big Dipper over NJ. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

What Causes Lightning?

A lightning storm striking down in a rural area. Credit: noaanews.noaa.gov

Thunder and lightning. When it comes to the forces of nature, few other things have inspired as much fear, reverence, or fascination – not to mention legends, mythos, and religious representations. As with all things in the natural world, what was originally seen as a act by the Gods (or other supernatural causes) has since come to be recognized as a natural phenomena.

But despite all that human beings have learned over the centuries, a degree of mystery remains when it comes to lightning. Experiments have been conducted since the time of Benjamin Franklin; however, we are still heavily reliant on theories as to how lighting behaves.

Description:
By definition, lightning is a sudden electrostatic discharge during an electrical storm. This discharge allows charged regions in the atmosphere to temporarily equalize themselves, when they strike an object on the ground. Although lightning is always accompanied by the sound of thunder, distant lightning may be seen but be too far away for the thunder to be heard.

Types:
Lightning can take one of three forms, which are defined by what is at the “end” of the branch channel (i.e. lightning bolt). For example, there is intra-cloud lighting (IC), which takes place between electrically charged regions of a cloud; cloud-to-cloud (CC) lighting, where it occurs between one functional thundercloud and another; and cloud-to-ground (CG) lightning, which primarily originates in the thundercloud and terminates on an Earth surface (but may also occur in the reverse direction).

Multiple paths of cloud-to-cloud lightning, Swifts Creek, Australia.. Credit: fir0002/flagstaffotos.com.au
Multiple paths of cloud-to-cloud lightning, Swifts Creek, Australia.. Credit: fir0002/flagstaffotos.com.au

Intra-cloud lightning most commonly occurs between the upper (or “anvil”) portion and lower reaches of a given thunderstorm. In such instances, the observer may see only a flash of light without hearing any thunder. The term “heat-lightning” is often applied here, due to the association between locally experienced warmth and the distant lightning flashes.

In the case of cloud-to-cloud lightning, the charge typically originates from beneath or within the anvil and scrambles through the upper cloud layers of a thunderstorm, normally generating a lightning bolt with multiple branches.

Cloud-to-ground (CG) is the best known type of lightning, though it is the third-most common – accounting for approximately 25% cases worldwide. In this case, the lightning takes the form of a discharge between a thundercloud and the ground, and is usually negative in polarity and initiated by a stepped branch moving down from the cloud.

CG lightning is the best known because, unlike other forms of lightning, it terminates on a physical object (most often the Earth), and therefore lends itself to being measured by instruments. In addition, it poses the greatest threat to life and property, so understanding its behavior is seen as a necessity.

 Frequency of lightning strikes throughout the world, based on data from NASA. Credit: Wikipedia/Citynoise
Frequency of lightning strikes throughout the world, based on data from NASA. Credit: Wikipedia/Citynoise

Properties:
Lighting originates when wind updrafts and downdrafts take place in the atmosphere, creating a charging mechanism that separates electric charges in clouds – leaving negative charges at the bottom and positive charges at the top. As the charge at the bottom of the cloud keeps growing, the potential difference between cloud and ground, which is positively charged, grows as well.

When a breakdown at the bottom of the cloud creates a pocket of positive charge, an electrostatic discharge channel forms and begins traveling downwards in steps tens of meters in length. In the case of IC or CC lightning, this channel is then drawn to other pockets of positive charges regions. In the case of CG strikes, the stepped leader is attracted to the positively charged ground.

Many factors affect the frequency, distribution, strength and physical properties of a “typical” lightning flash in a particular region of the world. These include ground elevation, latitude, prevailing wind currents, relative humidity, proximity to warm and cold bodies of water, etc. To a certain degree, the ratio between IC, CC and CG lightning may also vary by season in middle latitudes.

About 70% of lightning occurs over land in the tropics where atmospheric convection is the greatest. This occurs from both the mixture of warmer and colder air masses, as well as differences in moisture concentrations, and it generally happens at the boundaries between them. In the tropics, where the freezing level is generally higher in the atmosphere, only 10% of lightning flashes are CG. At the latitude of Norway (around 60° North latitude), where the freezing elevation is lower, 50% of lightning is CG.

Lightning strikes captured from space above Rome in 2012. Credit: ESA/NASA/André Kuipers
A series of lightning strikes imaged by the Nightpod camera aboard the ISS above Rome in 2012. Credit: ESA/NASA/André Kuipers

Effects:
In general, lightning has three measurable effects on the surrounding environment. First, there is the direct effect of a lightning strike itself, in which structural damage or even physical harm can result. When lighting strikes a tree, it vaporizes sap, which can result in the trunk exploding or a large branches snapping off and falling to the ground.

When lightning strikes sand, soil surrounding the plasma channel may melt, forming tubular structures called fulgurites. Buildings or tall structures hit by lightning may be damaged as the lightning seeks unintended paths to ground. And though roughly 90% of people struck by lightning survive, humans or animals struck by lightning may suffer severe injury due to internal organ and nervous system damage.

Thunder is also a direct result of electrostatic discharge. Because the plasma channel superheats the air in its immediate vicinity, the gaseous molecules undergo a rapid increase in pressure and thus expand outward from the lightning creating an audible shock wave (aka. thunder). Since the sound waves propagate not from a single source, but along the length of the lightning’s path, the origin’s varying distances can generate a rolling or rumbling effect.

High-energy radiation also results from a lightning strike. These include x-rays and gamma rays, which have been confirmed through observations using electric field and X-ray detectors, and space-based telescopes.

A fulgerite formed in sand y Credit: blogs.discovermagazine.com
A fulgerite formed in sandy patch as a result of a lightning strike. Credit: blogs.discovermagazine.com

Studies:
The first systematic and scientific study of lightning was performed by Benjamin Franklin during the second half of the 18th century. Prior to this, scientists had discerned how electricity could be separated into positive and negative charges and stored. They had also noted a connection between sparks produced in a laboratory and lightning.

Franklin theorized that clouds are electrically charged, from which it followed that lightning itself was electrical. Initially, he proposed testing this theory by placing iron rod next to a grounded wire, which would be held in place nearby by an insulated wax candle. If the clouds were electrically charged as he expected, then sparks would jump between the iron rod and the grounded wire.

In 1750, he published a proposal whereby a kite would be flown in a storm to attract lightning. In 1752, Thomas Francois D’Alibard successfully conducted the experiment in France, but used a 12 meter (40 foot) iron rod instead of a kite to generate sparks. By the summer of 1752, Franklin is believed to have conducted the experiment himself during a large storm that descended on Philadelphia.

For his upgraded version of the experiment, Franking attacked a key to the kite, which was connected via a damp string to an insulating silk ribbon wrapped around the knuckles of Franklin’s hand. Franklin’s body, meanwhile, provided the conducting path for the electrical currents to the ground. In addition to showing that thunderstorms contain electricity, Franklin was able to infer that the lower part of the thunderstorm was generally negatively charged as well.

An artistic rendition of Franklin's kite experiment painted by Benjamin West. Credit: Public Domain
An artistic rendition of Franklin’s kite experiment painted by Benjamin West. Credit: Public Domain

Little significant progress was made in understanding the properties of lightning until the late 19th century when photography and spectroscopic tools became available for lightning research. Time-resolved photography was used by many scientists during this period to identify individual lightning strokes that make up a lightning discharge to the ground.

Lightning research in modern times dates from the work of C.T.R. Wilson (1869 – 1959) who was the first to use electric field measurements to estimate the structure of thunderstorm charges involved in lightning discharges. Wilson also won the Nobel Prize for the invention of the Cloud Chamber, a particle detector used to discern the presence of ionized radiation.

By the 1960’s, interest grew thanks to the intense competition brought on by the Space Age. With spacecraft and satellites being sent into orbit, there were fears that lightning could post a threat to aerospace vehicles and the solid state electronics used in their computers and instrumentation. In addition, improved measurement and observational capabilities were made possible thanks to improvements in space-based technologies.

In addition to ground-based lightning detection, several instruments aboard satellites have been constructed to observe lightning distribution. These include the Optical Transient Detector (OTD), aboard the OrbView-1 satellite launched on April 3rd, 1995, and the subsequent Lightning Imaging Sensor (LIS) aboard TRMM, which was launched on November 28th, 1997.

The Colima Volcano (Volcán de Colima) pictured on March 29, 2015 with lightning. Credit and copyright: César Cantú.
The Colima Volcano (Volcán de Colima) pictured on March 29, 2015 with lightning. Credit and copyright: César Cantú.

Volcanic Lightning:
Volcanic activity can produce lightning-friendly conditions in multiple ways. For instance, the powerful ejection of enormous amounts of material and gases into the atmosphere creates a dense plume of highly charged particles, which establishes the perfect conditions for lightning. In addition, the ash density and constant motion within the plume continually produces electrostatic ionization. This in turn results in frequent and powerful flashes as the plume tries to neutralize itself.

This type of thunderstorm is often referred to as a “dirty thunderstorm” due to the high solid material (ash) content.  There have been several recorded instances of volcanic lightning taking place throughout history. For example, during the eruption of Vesuvius in 79 CE, Pliny the Younger noted several powerful and frequent flashes taking place around the volcanic plume.

Extraterrestrial Lightning:
Lightning has been observed within the atmospheres of other planets in our Solar System, such as Venus, Jupiter and Saturn. In the case of Venus, the first indications that lightning may be present in the upper atmosphere were observed by the Soviet Venera and U.S. Pioneer missions in the 1970s and 1980s. Radio pulses recorded by the Venus Express spacecraft (in April 2006) were confirmed as originating from lightning on Venus.

Artist concept of Venus' surface. Credit: NASA)
Artist concept of a lightning stormVenus. Credit: NASA)

Thunderstoms that are similar to those on Earth have been observed on Jupiter. They are believed to be the result of moist convection with Jupiter’s troposphere, where convective plumes bring wet air up from the depths to the upper parts of the atmosphere, where it then condenses into clouds of about 1000 km in size.

The imaging of the night-side hemisphere of Jupiter by the Galileo in the 1990 and by the Cassini spacecraft in December of 2000 revealed that storms are always associated with lightning on Jupiter. While lighting strikes are on average a few times more powerful than those on Earth, they are apparently less frequent. A few flashes have been detected in polar regions, making Jupiter the second known planet after Earth to exhibit polar lightning.

Lighting has also been observed on Saturn. The first instance occurred in 2010 when the Cassini space probe detected flashes on the night-side of the planet, which happened to coincide with the detection of powerful electrostatic discharges. In 2012, images taken by the Cassini probe in 2011 showed how the massive storm that wrapped the northern hemisphere was also generating powerful flashes of lightning.

Once thought to be the “hammer of the Gods”, lightning has since come to be understood as a natural phenomena, and one that exists on other terrestrial worlds and even gas giants. As we come to learn more about how lighting behaves here on Earth, that knowledge could go a long way in helping us to understand weather systems on other worlds as well.

We have written many articles about lightning here at Universe Today. Here’s an article about NASA’s biggest lightning protection system. And here’s an interesting article about the possible connection between solar wind and lightning.

If you’d like more info on lightning, check out the National Oceanic & Atmospheric Administration (NOAA) Homepage. And here’s a link to NASA’s Earth Observatory.

We also have an episode of Astronomy Cast, titled Episode 51: Earth.

NASA and NOAA Satellites Image Crippling Blizzard of 2015 Pounding New England

NASA-NOAA Suomi NPP satellite captures blizzard near peak intensity as it moves over New York and Boston regions at 1:45 am EST, Jan. 27, 2015. This view is a combination of the day-night band and high resolution infrared imagery from Suomi NPP showing the historic blizzard near peak intensity as it moves over the New York through Boston Metropolitan areas at 06:45Z (1:45 a.m. EST) on January 27, 2015. Credit: NOAA/NASA

NEW JERSEY – Record breaking snow from the ‘Blizzard of 2015’ hit vast regions of the US Northeast today, Jan. 27, 2015, stretching from Long Island to New England.

NASA and NOAA Earth orbiting satellites are keeping track of the storm affecting millions of residents.

This afternoon the agencies provided a new set of night-time and daytime views of the Blizzard of 2015 taken by the Suomi NPP and the GOES-East satellites.

The crippling blizzard is causing misery, extensive destruction to homes and businesses in localized areas, power outages, traffic accidents, breaks in some sea walls and deaths.

The satellite image above shows a combination of the day-night band and high resolution infrared imagery from the NASA-NOAA’s Suomi NPP satellite.

It was taken as the historic blizzard neared peak intensity as it moved over the New York area and through the Boston Metropolitan areas at 06:45Z (1:45 a.m. EST) on January 27, 2015.

The high cloud tops from the most intense parts of the storm blurred the regions normally bright nighttime lights in the satellite image.

Although the snow totals were about half the over two feet forecast for the New York Metropolitan region, many areas to the north and east were inundated with very heavy to historic snow fall totals, as bad or worse than the forecasters predicted.

Over two feet of snow fell on areas of New York’s Long Island and stretching north to vast regions of Connecticut, Massachusetts, New Hampshire and into Maine.

Near hurricane force waves are crashing into some coastal towns along the Massachusetts shoreline. Wind gusts as high as 78 mph have been recorded.

“Highest snowfall report has been Auburn, MA with 32.5 inches! Wind gust reports as high as 78 mph in Nantucket, MA,” according to a tweet this evening from the National Weather Service (NWS).

Worchester, Mass had a record breaking 31 inches of snow. And it’s still falling this evening in the 2nd largest city in New England.

A flood emergency is in effect in Marshfield, Mass., where an 80 foot section of the seawall was smashed by crashing waves and is destroying homes as shown on NBC Nightly News.

Blinding snow is raging in Portland, Maine this evening according on a live NBC News report.

On January 27, 2015 at 17:35 UTC (12:35 p.m. EST) NOAA's Geostationary Operational Environmental or GOES- East satellite captured an image of the nor'easter over New England. Credit: NASA/NOAA GOES Project
On January 27, 2015 at 17:35 UTC (12:35 p.m. EST) NOAA’s Geostationary Operational Environmental or GOES- East satellite captured an image of the nor’easter over New England. Credit: NASA/NOAA GOES Project

“At 10 a.m. EST, the National Weather Service noted “the powerful nor’easter that brought moderate to heavy snowfall and blizzard conditions to the Northeast on Monday will continue to affect the region on Tuesday, with heavy snow and blizzard conditions expected from eastern Long Island to Maine as the system slowly moves to the northeast. Snow and strong winds will being tapering off from south to north Tuesday night into Wednesday morning,” wrote NASA’s Rob Gutro of NASA’s Goddard Space Flight Center in an update.

“Later on January 27, 2015 at 17:35 UTC (12:35 p.m. EST) NOAA’s Geostationary Operational Environmental or GOES-East satellite captured an image of the nor’easter over New England. The image was created by the NASA/NOAA GOES Project and showed the clouds associated with the nor’easter blanketing New England. An occluded front extended north and eastward out of the low pressure area’s center out into the Atlantic Ocean.”

The latest NOAA forecast as of 4 PM, Jan. 27 states:

HIGH WINDS AND HEAVY SNOW WILL BEGIN TO GRADUALLY TAPER OFF FROM SOUTH TO NORTH TONIGHT…BUT WILL LAST INTO EARLY WEDNESDAY MORNING ACROSS PORTIONS OF MAINE. HEAVY SNOWFALL WILL COMBINE WITH SUSTAINED WINDS OF 30 TO 40 MPH…AND GUSTS IN EXCESS OF 50 MPH…TO CREATE LIFE-THREATENING WHITEOUT OR BLIZZARD CONDITIONS. THESE WINDS MAY LEAD TO DOWNED TREES AND POWER LINES RESULTING IN POWER OUTAGES. TRAVEL WILL BE IMPOSSIBLE AND LIFE-THREATENING IN MANY AREAS. ALONG THE IMMEDIATE COASTLINE…WIND GUSTS TO NEAR 65 MPH WILL BE POSSIBLE. COASTAL FLOODING AND SEVERE BEACH EROSION WILL ALSO BE A POSSIBILITY…AND VULNERABLE ROADS AND STRUCTURES MAY BE FLOODED OR DAMAGED.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Reporting from snowy New Jersey.

Ken Kremer

Weather Forecasting on Mars Likely to be Trickier Than on Earth

Clouds above the rim of "Endurance Crater" in this image from NASA's Mars Exploration Rover Opportunity. These clouds occur in a region of strong vertical shear. The cloud particles (ice in this martian case) fall out, and get dragged along away from the location where they originally condensed, forming characteristic streamers. Opportunity took this picture with its navigation camera during the rover's 269th martian day (Oct. 26, 2004). Image Credit: NASA/JPL

Predicting the weather here on Earth is never an easy thing, but predicting it on Mars may be ever trickier. Such is the argument presented by a recent study concerning “macroweather” patterns on the Red Planet, a new regime for understanding how planetary environments work.

When it comes to describing the climate of a planet, two important concepts come into play. First, there’s weather, which covers day-to-day changes due to fluctuations in the atmosphere. Second, there’s climate, which is more stable and subject to change over the course of decades. Macroweather, the latest addition to the game, describes the relatively stable periods that exist between short-term weather and long-term climate.

For those of us dwelling here on planet Earth, these are familiar concepts. But researchers say this same three-part pattern applies to atmospheric conditions on Mars. The results of a new paper, published today in Geophysical Research Letters also show that the Sun plays a major role in determining macroweather.

Several dust devils cross a plain in this animation of a series of images acquired by NASA's Mars Rover Spirit in May, 2005. (NASA/JPL-Caltech/Cornell/USGS)
Several dust devils cross a plain in this animation of a series of images acquired by NASA’s Mars Rover Spirit in May, 2005. (NASA/JPL-Caltech/Cornell/USGS)

The scientists chose to study Mars because of the wealth of data it has provided in recent decades, which they then used to test their theory that a transitional “macroweather” regime exists on a planet other than Earth. They used information collected from the Viking Mars lander mission from the 1970s and 1980s, and more recent data from the Mars Global Surveyor.

By taking into account how the sun heats Mars, as well as the thickness of the planet’s atmosphere, the scientists predicted that temperatures and wind would fluctuate on Mars similar to how they fluctuate on Earth. However, this transition from weather to macroweather would take place over 1.8 Martian days (about two Earth days), compared with a week to 10 days here on Earth.

“Our analysis of the data from Mars confirmed this prediction quite accurately,” said Shaun Lovejoy, a physics professor at McGill University in Montreal, Canada, and lead author of the paper. “This adds to evidence, from studies of Earth’s atmosphere and oceans, that the sun plays a central role in shaping the transition from short-term weather fluctuations to macroweather.”

Early Spring Dust Storms at the North Pole of Mars. Early spring typically brings dust storms to northern polar Mars. As the north polar cap begins to thaw, the temperature difference between the cold frost region and recently thawed surface results in swirling winds. The choppy dust clouds of several dust storms are visible in this mosaic of images taken by the Mars Global Surveyor spacecraft in 2002. The white polar cap is frozen carbon dioxide. (NASA/JPL/Malin Space Science Systems)
Early Spring Dust Storms at the North Pole of Mars, taken by the Mars Global Surveyor spacecraft in 2002. Image Credit: NASA/JPL/Malin Space Science Systems

The findings also indicate that weather on Mars can be predicted with some skill only two days in advance, compared to 10 days on Earth.

“We’re going to have a very hard time predicting the weather on Mars beyond two days given what we have found in weather records there,” said co-author Jan-Peter Muller from the University College London Mullard Space Science Laboratory in the UK, “which could prove tricky for the European lander and rover.”

This research promises to advance scientists’ understanding of the dynamics of Earth’s own atmosphere, and could potentially provide insights into the weather of Venus, Saturn’s moon Titan, and possibly the gas giants Jupiter, Saturn, Uranus, and Neptune.

As always, in learning about other planets and their climates, scientists are finding that the planets of our Solar System may have more in common with Earth than previously thought. Because of this, studying these other worlds will inevitably help us to better understand our own.

Further Reading: AGU, McGill

Extreme Weather is Linked to Global Warming, a New Study Suggests

In 2013, a blocking pattern over Alaska caused a record-breaking heat wave. Credit: Photo by Jesse Allen and Jeff Schmatltz, using data from theLand Processes Distributed Active Archive Center(LPDAAC) and theLANCE/EOSDIS Rapid Response

Extreme weather is becoming much more common. Heat waves and heavy rains are escalating, food crops are being damaged, human beings are being displaced due to flooding and animals are migrating toward the poles or going extinct.

Although it has been postulated that these extreme weather events may be due to climate change, a new study has found much better evidence.

The research shows blocking patterns — high-pressure systems that become immobile for days or even weeks, causing extreme heat waves and torrential rain — may have doubled in summers over the last decade.

“Since 2000, we have seen a cluster of these events,” lead author Dim Doumou told The Gaurdian earlier this month. “When these high-altitude waves become quasi-stationary, then we see more extreme weather at the surface. It is especially noticeable for heat extremes.”

It was a blocking pattern that led to the heat wave in Alaska in 2013, and to the devastating floods in Colorado last summer.

These blocking patterns are associated with the jet stream, the fast flowing winds high in Earth’s atmosphere at latitudes between 30 and 60 degrees. Sometimes the flow weakens, and the winds can dip down into more southern latitudes. These excursions lead to blocking patterns.

And the jet stream is becoming “wavier,” with steeper troughs and higher ridges.

The climatologists analyzed 35 years of wind data amassed from satellites, ships, weather stations, and meteorological balloons. They found that a warming Arctic creates and amplifies the conditions that lead to jet stream excursions, therefore raising the chances for long-duration extreme events, like droughts, floods, and heat waves.

That said the climatologists were unable to see a direct causal link between climate change and extreme weather. Ordinarily we think about “cause” in a simple sense in which one thing fully brings about another. But the Colorado floods, for example, were partially caused by moisture from the tropics, a blocking pattern, and past wildfires that increased the risk of runoff.

So there is a difference between “direct causation” and “systematic causation.” The latter is not direct, but it is no less real. In this study, the team noticed that the rise in blocking patterns correlates closely with the extra heating being delivered to the Arctic by climate change. Statistically speaking, the two seem to go hand in hand.

But the team does hypothesize a direct causal link. The jet streams are driven by the difference in temperature between the poles and the equator. So because the Arctic is warming more quickly than lower latitudes, the temperature difference is declining, providing less energy for the jet stream and causing it to meander.

Although the study shows a correlation — not causation — between more frequent blocking patterns (and therefore extreme weather) and Arctic warming, it is a solid step forward in understanding how the two are related.

The article has been published in the journal Proceedings of the National Academies of Science (PNAS).

To see why Universe Today writes about climate change, please read a past article on the subject.

Watch Out Japan! Super Typhoon Neoguri is ENORMOUS – As Seen from ISS

“Went right above Supertyphoon Neoguri. It is ENORMOUS. Watch out, Japan!” Taken from the ISS on 7 July 2014. Credit: ESA/NASA/Alexander Gerst

“Supertyphoon Neoguri is ENORMOUS” says Alexander Gerst, ESA’s German astronaut currently serving aboard the International Space Station (ISS) as he observes the monster storm swirling below on our Home Planet.

“Watch Out Japan!” added Gerst while he and his crewmates working aboard the ISS send back breathtaking imagery of the gigantic super typhoon heading towards Japan.

Neoguri is currently lashing the Japanese island of Okinawa with powerful damaging winds of over 125 mph and heavy downpours of flooding rain.

The Joint Typhoon Warning Center or JTWC reports that Neoguri is creating large and dangerous swells with wave heights to 37 feet (11.2 meters).

CNN reports today, July 8, that over 600,000 people have been told to evacuate and over 100,000 already have no power. Gusts have reached 212 kph (132 mph),

“Supertyphoon Neoguri did not even fit into our fisheye lens view. I have never seen anything like this.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst
“Supertyphoon Neoguri did not even fit into our fisheye lens view. I have never seen anything like this.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst

The storm is so big it could not even be captured in a single image taken today using the astronauts fisheye lens on the ISS.

“Supertyphoon Neoguri did not even fit into our fisheye lens view. I have never seen anything like this,” reports Gerst today, July 8.

And the worst may be yet to come as Neoguri is forecast to make landfall on Kyushu, the southernmost island of the Japanese mainland and home to more than 13 million people after 0000 UTC on July 10 (8 p.m. EDT on July 9).

Super Typhoon Neoguri formed in the western Pacific Ocean south-southeast of Guam on July 3, 2014, according to NASA.

ISS above Supertyphoon Neoguri. Taken from the ISS on 7 July 2014. Credit: ESA/NASA/Alexander Gerst
ISS above Supertyphoon Neoguri. Taken from the ISS on 7 July 2014. Credit: ESA/NASA/Alexander Gerst

By July 5 it had maximum sustained winds near 110 knots (127 mph).

The NASA and Japan Aerospace Exploration Agency’s Tropical Rainfall Measuring Mission or TRMM satellite passed over the typhoon on Monday, July 7. It was classified as a category four typhoon on the Saffir-Simpson hurricane scale with sustained winds estimates at 135 knots (155 mph), says NASA.

The eerie looking eye is 65 kilometers (40 miles) in diameter. See photo.

“Scary. The sunlight is far from reaching down the abyss of Neoguri's 65 km-wide eye.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst
“Scary. The sunlight is far from reaching down the abyss of Neoguri’s 65 km-wide eye.” Taken from the ISS on 8 July 2014. Credit: ESA/NASA/Alexander Gerst

It has since decreased slightly in intensity to a category three typhoon.

According to the Japanese Meteorological Agency Neoguri is currently located at 28°55′ (N) and E125°50′ (E).

At 5:02 PM EDT today, July 8, NASA just reported that the ISS flew directly over Neoguri and may have been visible in the new live HDEV cameras residing on the stations truss.

“Neoguri has been literally cut in half. Unreal.”  Taken from the ISS on 8 July 2014. Credit: NASA/Reid Wiseman
“Neoguri has been literally cut in half. Unreal.” Taken from the ISS on 8 July 2014. Credit: NASA/Reid Wiseman

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Path of Supertyphoon Neoguri. Credit: Japanese Meteorological Agency
Path of Supertyphoon Neoguri. Credit: Japanese Meteorological Agency

Mountains Soar Above the Appalachians in this Dramatic NASA Photo

Giant storm clouds swirl over North Carolina (Credit: NASA / Stu Broce)

Except these are mountains made of water, not rock! Taken from an altitude of 65,000 feet, the image above shows enormous storm cells swirling high over the mountains of western North Carolina on May 23, 2014. It was captured from one of NASA’s high-altitide ER-2 aircraft during a field research flight as part of the Integrated Precipitation and Hydrology Experiment (IPHEx) campaign.

The photo was NASA’s Image of the Day for June 19, 2014.

Visualization of the GPM Core Observatory satellite (NASA/Britt Griswold)
Visualization of the GPM Core Observatory satellite (NASA/Britt Griswold)

For six weeks the IPHEx campaign team from NASA, NOAA, and Duke University set up ground stations and flew ER-2 missions over the southeastern U.S., collecting data on weather and rainfall that will be used to supplement and calibrate data gathered by the GPM Core Observatory launched in February.

By the time its role in IPHEx was completed on June 16, the Lockheed ER-2 aircraft had flown more than 95 hours during 18 flights over North and South Carolina, Georgia, Florida, and Tennessee. Its high-altitude capabilities allow researchers to safely fly above storm systems, taking measurements like a satellite would.

Learn more about the ER-2 flights here, and read more about the IPHEx campaign on Duke University’s Pratt School of Engineering site here.

Source: NASA

NASA's ER-2 at the Armstrong Flight Research Center's Building 703 in Palmdale, CA (NASA / Tom Tschida)
NASA’s ER-2 at the Armstrong Flight Research Center’s Building 703 in Palmdale, CA (NASA/Tom Tschida)

Deadly Monster Winter Storm Batters US Eastern Seaboard – More Snow and Ice on the Way!

This visible image of the winter storm over the U.S. south and East Coast was taken by NOAA's GOES-13 satellite on Feb. 13 at 1455 UTC/9:45 a.m. EST. Snow covered ground can be seen over the Great Lakes region and Ohio Valley. Image Credit: NASA/NOAA GOES Project

This visible image of the winter storm over the U.S. south and East Coast was taken by NOAA’s GOES-13 satellite on Feb. 13 at 1455 UTC/9:45 a.m. EST. Snow covered ground can be seen over the Great Lakes region and Ohio Valley. Image Credit: NASA/NOAA GOES Project
Story updated[/caption]

A deadly monster storm is battering virtually the entire US Eastern seaboard today, Thursday, Feb. 13, as it moves from the Southeast to the Northeast and into the New England states, wreaking havoc and causing miserable weather conditions for over 100 million Americas.

This afternoon, NASA and NOAA published a new image taken by a GOES satellite that showed the extent of the clouds associated with the massive winter storm over the US East Coast – see above and below.

Blizzard, white out and slippery conditions have already caused more than 18 deaths.

The killer storm has brought relentless waves of snow, sleet and ice over the past two days covering a vast swath stretching from inland to coastal areas as it moved up from the southern to northern states.

More than a foot of snow has already fallen in many areas today stretching from the Mid-Atlantic into the entire Northeast region.

Several states have declared states of emergency.

This is the season’s 12th snow storm. In many Northeast localities, the accumulated snowfall totals are three times the normal average. As a result many municipalities are running out of road salt.

And to add insult to injury, much more icy snow is falling overnight into Friday on top of the massive existing mounds and piles of frozen ice and snow that’s accumulated over the past few weeks of subfreezing temperatures.

There are also predictions for patches of “thunder snow” — which is a snow storm mixed with thunder and lightning!

Full disk image of the winter storm over the U.S. south and East Coast was taken by NOAA's GOES-13 satellite on Feb. 13 at 1455 UTC/9:45 a.m. EST. Credit:  NASA/NOAA GOES Project
Full disk image of the winter storm over the U.S. south and East Coast was taken by NOAA’s GOES-13 satellite on Feb. 13 at 1455 UTC/9:45 a.m. EST. Credit: NASA/NOAA GOES Project

Incredibly, another round of snow is forecast for Saturday.

Much of the I-95 corridor where I also live has been especially hard hit.

The image above was created from data captured by NOAA’s GOES-East satellite today, Feb. 13 at 1455 UTC/9:45 a.m. EST by a team from the NASA/NOAA’s GOES Project at NASA’s Goddard Space Flight Center in Greenbelt, Md.

“The clouds and fallen snow data from NOAA’s GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA’s Aqua and Terra satellites,” said NASA in a statement.

An eight months pregnant 36 year old women was tragically killed in New York City accident today by a snowplow. Thank God the unborn baby was saved and delivered by cesarean section.

The storm has caused thousands of traffic accidents and several deaths.

Video Caption: This animation of NOAA’s GOES satellite data shows the progression of the major winter storm in the U.S. south from Feb. 10 at 1815 UTC/1:15 p.m. EST to Feb. 12 to 1845 UTC/1:45 p.m. EST. Credit: NASA/NOAA GOES Project, Dennis Chesters

Hundreds of thousands of customers have lost power due to fallen tree limbs on exposed power lines, mostly in the southeast. In recent days, hundreds of thousands of us here in the Northeast lost power after a severe ice storm.

Mountains of snow inundate the Northeast. Credit: Mark Usciak
Mountains of snow inundate the Northeast. Credit: Mark Usciak

Most of those affected were left with no heat in subfreezing temperatures. It’s definitely no fun when you can see you exhaled breath – indoors.

Many school districts were closed today. But not in NYC where the new Mayor Bill DeBlasio kept schools open, and faced a hail of criticism – including from NBC News weatherman Al Roker.

Over 6500 airplane flights have been cancelled, stranding over a half million people.

So after days of shoveling, even more is on tap for the morning. Be careful, pace yourself and don’t overdo it – as several people died from heart attacks digging out the heavy slushy mess


Here is this evenings forecast (Feb 13) from the National Weather Service (NWS):

STORM SUMMARY NUMBER 09 FOR SOUTHERN PLAINS TO EAST COAST WINTER STORM
NWS WEATHER PREDICTION CENTER COLLEGE PARK MD – – 1000 PM EST THU FEB 13 2014

…LOW PRESSURE CENTER HAS MOVED OFF THE NEW JERSEY COAST AND IS
RAPIDLY INTENSIFYING…HEAVY SNOW BANDS IMPACTING INTERIOR
NORTHEAST AND I 95 CORRIDOR…WINDS INCREASING ACROSS THE AFFECTED
REGION…

WINTER STORM WARNINGS AND WINTER WEATHER ADVISORIES ARE IN EFFECT
FOR THE NORTHERN MID ATLANTIC AND NORTHEAST….

FOR A DETAILED GRAPHICAL DEPICTION OF THE LATEST
WATCHES…WARNINGS AND ADVISORIES…PLEASE SEE WWW.WEATHER.GOV

AT 900 PM EST…THE MAIN CENTER OF A RAPIDLY INTENSIFYING LOW
PRESSURE SYSTEM WITH ESTIMATED CENTRAL PRESSURE OF 986 MB…29.12
INCHES…WAS LOCATED JUST EAST OF THE SOUTHERN NEW JERSEY COAST.
NATIONAL WEATHER SERVICE DOPPLER RADAR AND SURFACE OBSERVATIONS
INDICATED THAT OVER THE PAST FEW HOURS…A BAND OF HEAVY SNOW WAS
IMPACTING CENTRAL PENNSYLVANIA ACROSS NORTHERN NEW ENGLAND TO
NORTHERN MAINE. MEANWHILE…ANOTHER BAND OF MODERATE TO HEAVY
SNOW WAS LOCATED ALONG THE I 95 CORRIDOR FROM WASHINGTON DC TO NEW YORK CITY. EAST OF I 95 THE PRECIPITATION TYPE IS MAINLY RAIN…BUT A CHANGEOVER BACK TO SNOW IS EXPECTED.

Stay tuned here for Ken’s continuing planetary and human spaceflight news.

Ken Kremer

Recent ice and snow storms caused hundreds of thousands to lose power and heat in the Northeast. Credit: Ken Kremer
Recent ice and snow storms caused hundreds of thousands to lose power and heat in the Northeast in subfreezing temperatures. Credit: Ken Kremer
Mountains of snow inundate the Northeast. Credit: Mark Usciak
Mountains of snow inundate the Northeast. Credit: Mark Usciak

Satellite Image of the “Polar Vortex” Over the US

This image was captured by NOAA's GOES-East satellite on January 6, 2014 at 1601 UTC/11:01 a.m. EST. A frontal system that brought rain to the coast is draped from north to south along the U.S. East Coast. Behind the front lies the clearer skies bitter cold air associated with the Polar Vortex.

If you live in the north and eastern part of the US, you’re probably experiencing some frigid weather. You’re probably also hearing people talk about something called a “polar vortex.”

Just what is a polar vortex and why is it making the temperatures so cold?

This image was captured by NOAA’s GOES-East satellite on Jan. 6, 2014, at 11:01 a.m. EST (1601 UTC). A frontal system that brought rain and snow to the US East coast is seen draped from north to south, and behind the front lies the clearer skies bitter cold air associated with the polar vortex. Also visible in the image is snow on the ground in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Michigan, Iowa and Missouri. The clouds over Texas are associated with a low pressure system centered over western Oklahoma that is part of the cold front connected to the movement of the polar vortex.

NASA explains that the polar vortex is a “whirling and persistent large area of low pressure, found typically over both North and South poles.”

Weather reports say the northern polar vortex was pushing southward over western Wisconsin and eastern Minnesota on Monday, Jan. 6, 2014, and was bringing frigid temperatures to half of the continental United States. It is expected to move northward back over Canada toward the end of the week.

More about the polar vortex:

Both the northern and southern polar vortexes are located in the middle and upper troposphere (lowest level of the atmosphere) and the stratosphere (next level up in the atmosphere). The polar vortex is a winter phenomenon. It develops and strengthens in its respective hemispheres’ winters as the sun sets over the polar region and temperatures cool. They weaken in the summer. In the Northern Hemisphere, they circulate in a counterclockwise direction, so the vortex sitting over western Wisconsin is sweeping in cold Arctic air around it.

Source: NASA

A Heat Wave So Big You Can See It From Space

Image taken by NOAA's GOES East satellite at 12:45 p.m. EDT on July 15, 2013. (NOAA/NASA GOES Project)

Hot enough for ya? If you live anywhere on the eastern half of the United States (like me) you’ve probably been sweating it out over the past several days in what certainly feels like the warmest week yet for the season. The cause of the oppressive weather? A large mid-level ridge centered over the Ohio Valley — large enough to be easily visible from space.

The image above was taken by the GOES East satellite at 12:45 p.m. EDT on July 15. The clear area over Ohio shows the center of the system, which has been driving temperatures up into the 90s for much of the eastern U.S. and is expected to expand into the plains by mid-week. Along with increased humidity, heat index values will exceed 100 ºF and even approach 110 ºF on Friday.

From the NASA Image of the Day page:

A very anomalous weather pattern is in place over the U.S. for mid-July. Trapped between an upper level ridge centered over the Ohio Valley and the closed upper level low over the Texas/Oklahoma border, atypical hot, muggy air is stifling a broad swath of the eastern U.S. The closed low is expected to drift west toward New Mexico bringing heavy, localized rain to some areas and temperatures running 10-20 degrees below mid-July averages. Across the east, temperatures will warm well into the 90s and stay there through the week. (NOAA)

Rendering of a GOES satellite (NOAA)
Rendering of a GOES satellite (NOAA)

As of the time of this writing heat advisories are in place in many parts of Michigan, southern Minnesota, and southern New England, and excessive heat warnings are active in eastern Pennsylvania and west central New Jersey. (Source)

Click here for summer heat safety tips.

Meanwhile, a closed low — seen above as a large, moisture-laden spiraling cloud system — is moving west across Texas and New Mexico, and is expected to bring lower-than-average temperatures along with heavy rains and flash flooding.

Keep up to date with weather alerts for your area at the NOAA’s National Weather Service site here, and see the latest GOES satellite images here.

Image Credit: NOAA/NASA GOES Project

At an altitude of 22,336 miles, the geosynchronous GOES satellites continuously provide observations of 60 percent of the Earth including the continental United States, providing weather monitoring and forecast operations as well as a continuous and reliable stream of environmental information and severe weather warnings.