Dawn Spacecraft’s Dwarf Planet Dance Improves Hubble’s Far-Away View

The Hubble Space Telescope is one of the best observatories humanity has. It’s been operating for nearly 25 years in space, is still highly productive, and is a key element to mission planning for NASA as it sends spacecraft out into the Solar System. When the agency was getting ready to send Dawn to Vesta, for example, it took pictures to help with calibration.

Then Dawn got up close to the dwarf planet in 2011 and found a few surprises — liquid water that possibly flowed temporarily on the surface, for example. And as the spacecraft draws near to Ceres for a close encounter next year, it also will be looking for water — in the form of its atmosphere.

That’s following on from research out of the Herschel Space Telescope published earlier this year, showing that Ceres has a thin water vapor atmosphere surrounding the dwarf planet. It could be producing water similarly to how a comet does, through sublimation, but investigators won’t know much until they get close-up.

“Ceres has some sort of mechanism that’s putting out water vapor and causing a thin, temporary atmosphere,” said Keri Bean, a mission operations engineer at the Jet Propulsion Laboratory who works on Dawn, in a Google+ Hangout yesterday (Dec. 11). “I think that we’re going to try to look into this, and we don’t know what else Ceres will have in store for us.”

Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell
Ceres as seen from the Earth-based Hubble Space Telescope in 2004 (left) and with the Dawn spacecraft in 2014 as it approached the dwarf planet. Hubble Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), L. McFadden (University of Maryland, College Park), and M. Mutchler and Z. Levay (STScI). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

Dawn is now so close to Ceres that its pictures will soon exceed the best ones Hubble had to offer. The image above (at right) is modest compared to the space telescope, but in a planned photo session Jan. 26 Dawn will have slightly better pictures than Hubble. By Feb. 4 they will be twice as good in quality and then seven times as good Feb. 20.

The spacecraft’s images not only have science purposes, as they let investigators study the surface, but also serve as optical navigation aids. Ceres is a tiny body and hard to navigate to from far away, so as it gets closer these pictures are crucial for Dawn to figure out where to go next.

Dawn will get its close-up of Ceres in the spring when it arrives at the dwarf planet. To get the latest on the mission, check out the entire Google+ Hangout from yesterday.

Dawn Spacecraft Will Take Pictures Of Its Target Dwarf Planet Today

The year 2015 is going to be a big one for far-off spacecraft. Among them is the long-running Dawn mission, which is on its way to the dwarf planet Ceres (by way of Vesta) and should settle into orbit in April after a radiation blast delayed the original flight plan.

And today (Dec. 1) comes a special day for Dawn — when it turns its cameras to Ceres to capture the world, which will appear about nine pixels across. The reason? Besides scientific curiosity, it turns out to be a perfect calibration target, according to NASA.

“One final calibration of the science camera is needed before arrival at Ceres,” wrote Marc Rayman, the mission director at the Jet Propulsion Laboratory, in a recent blog post.

“To accomplish it, the camera needs to take pictures of a target that appears just a few pixels across. The endless sky that surrounds our interplanetary traveler is full of stars, but those beautiful pinpoints of light, while easily detectable, are too small for this specialized measurement. But there is an object that just happens to be the right size. On Dec. 1, Ceres will be about nine pixels in diameter, nearly perfect for this calibration.”

The Dawn spacecraft's first image of Ceres, taken July 20, 2010. Credit: NASA/JPL-Caltech/MPS/DLR/IDA
The Dawn spacecraft’s first image of Ceres, taken July 20, 2010. Credit: NASA/JPL-Caltech/MPS/DLR/IDA

This isn’t the first picture of Ceres by Dawn — not by a long-shot — but it sure will loom bigger than you see in the image at left, which was taken in 2010. Dawn hadn’t even arrived at Vesta at the time, the blog post points out, and the spacecraft was about 1,300 times further from Ceres then as it is now. Translating that into visual magnitude, the new pictures of Ceres will show an appearance about as bright as Venus, from Earth’s perspective.

In October, the Dawn blog said that more pictures of Ceres are planned on Jan. 13, when Ceres will appear 25 pixels across. This won’t be quite the best view ever — that was taken by the Hubble Space Telescope, which you can see below, — but just wait a couple of weeks. The mission planners say that by Jan. 26, the images will be slightly better. On Feb. 4, they will be twice as good and by Feb. 20, seven times as good.

As with the calibration photo taken today, these photos in 2015 will have a double purpose: optical navigation. It’s to help the spacecraft figure out where to go, because our pictures of Ceres are so fuzzy that mission planners will need more exact information as the mission proceeds.

You can read more information about the picture-taking, and Dawn’s planned approach to Ceres, in the Nov. 28 entry of the Dawn blog.

Pictures of the asteroid Ceres taken by the Hubble Space Telescope and released in 2005. It shows the asteroid moving over two hours and 20 minutes, which is about a quarter of a day on Ceres (nine hours). At the time, scientists said the bright spot is a mystery. Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)
Pictures of the asteroid Ceres taken by the Hubble Space Telescope and released in 2005. It shows the asteroid rotating over two hours and 20 minutes, which is about a quarter of a day on Ceres (nine hours). At the time, scientists said the bright spot is a mystery. Credit: NASA, ESA, J. Parker (Southwest Research Institute), P. Thomas (Cornell University), and L. McFadden (University of Maryland, College Park)

Weekly Space Hangout – Nov. 21, 2014: New Images of Europa

Host: Fraser Cain (@fcain)

Guests:
Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter)
Brian Koberlein (@briankoberlein)
Ramin Skibba (@raminskibba)
Dave Dickinson (@astroguyz / www.astroguyz.com)

Continue reading “Weekly Space Hangout – Nov. 21, 2014: New Images of Europa”

Amazingly Detailed New Maps of Asteroid Vesta

Vesta is one of the largest asteroids in the Solar System. Comprising 9% of the mass in the Asteroid Belt, it is second in size only to the dwarf-planet Ceres. And now, thanks to data obtained by NASA’s Dawn spacecraft, Vesta’s surface has been mapped out in unprecedented detail.
These high-resolution geological maps reveal the variety of Vesta’s surface features and provide a window into the asteroid’s history.

“The geologic mapping campaign at Vesta took about two-and-a-half years to complete, and the resulting maps enabled us to recognize a geologic timescale of Vesta for comparison to other planets,” said David Williams of Arizona State University.

Geological mapping is a technique used to derive the geologic history of a planetary object from detailed analysis of surface morphology, topography, color and brightness information. The team found that Vesta’s geological history is characterized by a sequence of large impact events, primarily by the Veneneia and Rheasilvia impacts in Vesta’s early history and the Marcia impact in its late history.

The geologic mapping of Vesta was made possible by the Dawn spacecraft’s framing camera, which was provided by the Max Planck Institute for Solar System Research of the German Max Planck Society and the German Aerospace Center.  This camera takes panchromatic images and seven bands of color-filtered images, which are used to create topographic models of the surface that aid in the geologic interpretation.

A team of 14 scientists mapped the surface of Vesta using Dawn data. The study was led by three NASA-funded participating scientists: Williams; R. Aileen Yingst of the Planetary Science Institute; and W. Brent Garry of the NASA Goddard Spaceflight Center.

This high-res geological map of Vesta is derived from Dawn spacecraft data. Brown colors represent the oldest, most heavily cratered surface. Credit: NASA/JPL-Caltech/ASU
This high-res geological map of Vesta is derived from Dawn spacecraft data. Credit: NASA/JPL-Caltech/ASU

The brown colored sections of the map represent the oldest, most heavily cratered surface. Purple colors in the north and light blue represent terrains modified by the Veneneia and Rheasilvia impacts, respectively. Light purples and dark blue colors below the equator represent the interior of the Rheasilvia and Veneneia basins. Greens and yellows represent relatively young landslides or other downhill movement and crater impact materials, respectively.

The map indicates the prominence of impact events – such as the Veneneia, Rheasilvia and Marcia impacts, respectively – in shaping the asteroid’s surface. It also indicates that the oldest crust on Vesta pre-dates the earliest Veneneia impact. The relative timescale is supplemented by model-based absolute ages from two different approaches that apply crater statistics to date the surface.

“This mapping was crucial for getting a better understanding of Vesta’s geological history, as well as providing context for the compositional information that we received from other instruments on the spacecraft: the visible and infrared (VIR) mapping spectrometer and the gamma-ray and neutron detector (GRaND),” said Carol Raymond, Dawn’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, California.

The objective of NASA’s Dawn mission is to characterize the two most massive objects in the main asteroid belt between Mars and Jupiter – Vesta and the dwarf planet Ceres.

These Hubble Space Telescope images of Vesta and Ceres show two of the most massive asteroids in the asteroid belt, a region between Mars and Jupiter. Credit: NASA/European Space Agency
These Hubble Space Telescope images of Vesta and Ceres show two of the most massive asteroids in the asteroid belt. Credit: NASA/European Space Agency

Asteroids like Vesta are remnants of the formation of the solar system, giving scientists a peek at its early history. They can also harbor molecules that are the building blocks of life and reveal clues about the origins of life on Earth. Hence why scientists are eager to learn more about its secrets.

The Dawn spacecraft was launched in September of 2007 and orbited Vesta between July 2011 and September 2012. Using ion propulsion in spiraling trajectories to travel from Earth to Vesta, Dawn will orbit Vesta and then continue on to orbit the dwarf planet Ceres by April 2015.

The high resolution maps were included with a series of 11 scientific papers published this week in a special issue of the journal Icarus. The Dawn spacecraft is currently on its way to Ceres, the largest object in the asteroid belt, and will arrive at Ceres in March 2015.

Further Reading: NASA

How an Ancient Angled Impact Created Vesta’s Groovy Belt

When NASA’s Dawn spacecraft arrived at Vesta in July 2011, two features immediately jumped out at planetary scientists who had been so eagerly anticipating a good look at the giant asteroid. One was a series of long troughs encircling Vesta’s equator, and the other was the enormous crater at its southern pole. Named Rheasilvia, the centrally-peaked basin spans 500 kilometers in width and it was hypothesized that the impact event that created it was also responsible for the deep Grand Canyon-sized grooves gouging Vesta’s middle.

Now, research led by a Brown University professor and a former graduate student reveal how it all probably happened.

“Vesta got hammered,” said Peter Schultz, professor of earth, environmental, and planetary sciences at Brown and the study’s senior author. “The whole interior was reverberating, and what we see on the surface is the manifestation of what happened in the interior.”

Using a 4-meter-long air-powered cannon at NASA’s Ames Vertical Gun Range, Peter Schultz and Brown graduate Angela Stickle – now a researcher at the Johns Hopkins University Applied Physics Laboratory – recreated cosmic impact events with small pellets fired at softball-sized acrylic spheres at the type of velocities you’d find in space.

The impacts were captured on super-high-speed camera. What Stickle and Schultz saw were stress fractures occurring not only at the points of impact on the acrylic spheres but also at the point directly opposite them, and then rapidly propagating toward the midlines of the spheres… their “equators,” if you will.

Scaled up to Vesta size and composition, these levels of forces would have created precisely the types of deep troughs seen today running askew around Vesta’s midsection.

Watch a million-fps video of a test impact below:

So why is Vesta’s trough belt slanted? According to the researchers’ abstract, “experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target.” That is, the impactor that struck Vesta’s south pole likely came in at an angle, which made for uneven propagation of stress fracturing outward across the protoplanet (and smashed its south pole so much that scientists had initially said it was “missing!”)

Close-ups of Vesta's equatorial troughs obtained by Dawn's framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)
Close-ups of Vesta’s equatorial troughs obtained by Dawn’s framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)

That angle of incidence — estimated to be less than 40 degrees — not only left Vesta with a slanted belt of grooves, but also probably kept it from getting blasted apart altogether.

“Vesta was lucky,” said Schultz. “If this collision had been straight on, there would have been one less large asteroid and only a family of fragments left behind.”

Watch a video tour of Vesta made from data acquired by Dawn in 2011 and 2012 below:

The team’s findings will be published in the February 2015 issue of the journal Icarus and are currently available online here (paywall, sorry). Also you can see many more images of Vesta from the Dawn mission here and find out the latest news from the ongoing mission to Ceres on the Dawn Journal.

Source: Brown University news

Radiation Blast Delays NASA Spacecraft’s Arrival At Dwarf Planet Ceres

NASA’s Dawn spacecraft experienced technical problems in the past week that will force it to arrive at dwarf planet Ceres one month later than planned, the agency said in a statement yesterday (Sept. 16).

Controllers discovered Dawn was in safe mode Sept. 11 after radiation disabled its ion engine, which uses electrical fields to “push” the spacecraft along. The radiation stopped all engine thrusting activities. The thrusting resumed Monday (Sept. 15) after controllers identified and fixed the problem, but then they found another anomaly troubling the spacecraft.

Dawn’s main antenna was also disabled, forcing the spacecraft to send signals to Earth (a 53-minute roundtrip by light speed) through a weaker secondary antenna and slowing communications. The cause of this problem hasn’t been figured out yet, but controllers suspect radiation affected the computer’s software. A computer reset has solved the issue, NASA added. The spacecraft is now functioning normally.

Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA
Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA

“As a result of the change in the thrust plan, Dawn will enter into orbit around dwarf planet Ceres in April 2015, about a month later than previously planned. The plans for exploring Ceres once the spacecraft is in orbit, however, are not affected,” NASA’s Jet Propulsion Laboratory stated in a press release.

Dawn is en route to Ceres after orbiting the huge asteroid Vesta between July 2011 and September 2012. A similar suspected radiation blast three years ago also disabled Dawn’s engine before it reached Vesta, but the ion system worked perfectly in moving Dawn away from Vesta when that phase of its mission was complete, NASA noted.

Among Dawn’s findings at Vesta is that the asteroid is full of hydrogen, and it contains the hydrated mineral hydroxyl. This likely came to the asteroid when smaller space rocks brought the volatiles to its surface through low-speed collisions.

Spacecraft can experience radiation through energy from the Sun (particularly from solar flares) and also from cosmic rays, which are electrically charged particles that originate outside the Solar System. Earth’s atmosphere shields the surface from most space-based radiation.

Source: Jet Propulsion Laboratory

Stolen Meteorite Found at a Tennis Court

Here’s a bit of good news: the Serooskerken meteorite, which was stolen from the Sonnenborgh Museum and Observatory in Utrecht, Netherlands on Monday night, has been recovered. It was found in a bag left in some bushes alongside a tennis court and turned in to the police.

It’s not quite “game, set, match” though; unfortunately the meteorite was broken during the theft. (See a photo here via Twitter follower Marieke Baan.) Still, the Sonnenborgh Museum director is glad to have the pieces back, which he said will remain useful for research and can still be exhibited. (Source)

The Serooskerken meteorite was recovered from a fall in the Dutch province of Zeeland on August 28, 1925. Classified as a diogenite (HED) it is thought to have originated from the protoplanet Vesta, the second most massive object in the main asteroid belt between the orbits of Mars and Jupiter (and the previous target of NASA’s Dawn mission.) It is one of only five meteorite specimens ever recovered in the Netherlands.

The meteorite was one of several items reported stolen from the Sonnenborgh Museum on the night of August 18-19, 2014.

Find out more about the recovery (in Dutch) and see photos here.

HT to Google+ Space Community member Andre van der Hoeven for the update on this story.

A Piece of Vesta Has Been Stolen!

Calling all meteorite collectors and enthusiasts! There’s a hot space rock at large and, as Indiana Jones would say, it belongs in a museum. Perhaps you can help put it back in one.

Mosaic synthesizes some of the best views the spacecraft had of the giant asteroid Vesta. Dawn studied Vesta. The towering mountain at the south pole - more than twice the height of Mount Everest - is visible at the bottom of the image. The set of three craters known as the "snowman" can be seen at the top left. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA
Mosaic of the asteroid Vesta made from images acquired by NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/UCAL/MPS/DLR/IDA

On Aug. 19 a burglary was reported at the Sonnenborgh Museum and Observatory in Utrecht, Netherlands, and one of the items missing is a meteorite that is thought to have originated from the asteroid Vesta.

Seen above in a photo from the museum’s collection, the Meteorite of Serooskerken was recovered from a rare fall in 1925 in the province of Zeeland. Only five meteorites have ever been found in the Netherlands, making the Serooskerken specimen somewhat of a national treasure – not to mention a valuable piece of our Solar System’s history!

About 5–6% of all the meteorites found on Earth are thought to be from Vesta, the second-largest world in the main asteroid belt. (Source)

It doesn’t sound like the meteorite was the target of the burglary, but rather it just happened to be included with other things taken from the museum’s safe.

If you have any information on the burglary or see this meteorite offered up for sale anywhere, please report it to the Sonnenborgh Museum here.

If you are a Dutch-speaker, audio of the news can be found here. (Any translations would be welcome in the comments!)

HT to Google+ Space Community member Andre van der Hoeven.

Ancient Asteroid Impacts Left Serpentine Traces On Vesta: Study

While “dark materials” may leave some of us thinking about a certain Philip Pullman book series, on the asteroid Vesta its presence belies something equally exotic: old smaller asteroid impacts on its surface.

The dark stuff on the lighter surface has puzzled researchers since it was discovered in 2011 (and has been brought up in other studies), but a new team says it has found that serpentine is among the components.  Because that mineral can’t survive temperatures that are more than 400 degrees Celsius (752 degrees Fahrenheit), this means that scenarios such as volcanic eruptions can’t have caused it. This leaves only smaller asteroids, the team says.

“These meteorites are regarded as fragments of carbon-rich asteroids. The impacts must have been comparatively slow, because an asteroid crashing at high speeds would have produced temperatures too high to sustain serpentine,” the Max Planck Institute for Solar System Research stated.

Image of the crater Numisia on Vesta, where researchers found the spectral signature of serpentine. Picture taken by NASA's Dawn spacecraft. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Image of the crater Numisia on Vesta, where researchers found the spectral signature of serpentine. Picture taken by NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

 

“In a previous study, scientists from the MPS had calculated how dark material would be distributed on Vesta as a result of a low-speed oblique impact. Their results are consistent with the distribution of dark material on the edge of one of the two large impact basins in the southern hemisphere.”

The results came from analyzing images the NASA Dawn spacecraft took of Vesta between July 2011 and September 2012. The researchers recalibrated the data and also backed up their results by examining serpentine in laboratory conditions.

The research was published in the journal Icarus and you can also read a summary of the research here, from a presentation at the 2014 Lunar and Planetary Science Conference.

Source: Max Planck Institute for Solar System Research

Ceres and Vesta Converge in the Sky on July 5: How to See It

I bet you’ve forgotten. I almost did. In April, we reported that Ceres and Vesta, the largest and brightest asteroids respectively, were speeding through Virgo in tandem. Since then both have faded, but the best is yet to come. Converging closer by the day, on July 5, the two will make rare close pass of each other when they’ll be separated by just 10 minutes of arc or the thickness of a fat crescent moon.

Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. Credit: NASA
Vesta (left) and Ceres. Vesta was photographed up close by the Dawn spacecraft from July 2011-Sept. 2012, while the best views we have to date of Ceres come from the Hubble Space Telescope. The bright white spot is still a mystery. NASA will plunk Dawn into orbit around Ceres next February.  Credit: NASA

Both asteroids are still within range of ordinary 35mm and larger binoculars; Vesta is easy at magnitude +7 while Ceres still manages a respectable +8.3. From an outer suburban or rural site, you can watch them draw together in the coming two weeks as if on a collision course. They won’t crash anytime soon. We merely see the two bodies along the same line of sight. Vesta’s closer to Earth at 164 million miles (264 million km) and moves more quickly across the sky compared to Ceres, which orbits 51 million miles (82 million km) farther out.

Ceres and Vesta are happily near an easy naked eye star, Zeta Virginis, which forms an isosceles triangle right now with Mars and Spica. The map shows the sky around 10 p.m. local time facing southwest. Stellarium
Ceres and Vesta lie near an easy naked eye star, Zeta Virginis, which forms an isosceles triangle right now with Mars and Spica. The map shows the sky around 10 p.m. local time tonight facing southwest. Stellarium

Right now the two asteroids are little more than a moon diameter apart not far from the 3rd magnitude star Zeta Virginis. Happily, nearby Mars and Spica make excellent guides for finding Zeta. Once you’re there, use binoculars and the more detailed map to track down Ceres and Vesta.

Virgo will be busy Saturday night July 5, 2014 when the waxing moon is in close conjunction with Mars with Ceres and Vesta at their closest. Stellarium
Virgo will be busy Saturday night July 5, 2014 when the waxing moon passes about 1/2 degree from Mars as Ceres and Vesta squeeze closest.  Stellarium

In early July they’ll look like a wide double star in binoculars and easily fit in the same high power telescopic view. Vesta has always looked pale yellow to my eye. Will its color differ from Ceres? Sitting side by side it will be easier than ever to compare them. Vesta is a stony asteroid with a surface composed of solidified (and meteoroid-battered) lavas; Ceres is darker and covered with a mix of water ice and carbonaceous materials.

On the night of closest approach, it may be difficult to spot dimmer Ceres in binoculars. By coincidence, the 8-day-old moon will be very close to the planet Mars and brighten up the neighborhood. We’ll report more on that event in a future article.

With so much happening the evening of July 5, let’s hope for a good round of clear skies.