How Far is the Asteroid Belt from Earth?

Artist's impression of the asteroid belt. Image credit: NASA/JPL-Caltech

In the 18th century, observations made of all the known planets (Mercury, Venus, Earth, Mars, Jupiter and Saturn) led astronomers to the realization that there was a pattern in their orbits. Eventually, this led to the Titius–Bode law, which predicted the amount of space that naturally existed between each celestial body that orbited our Sun. In accordance with this law, astronomers noted that there appeared to be a discernible gap between the orbits of Mars and Jupiter.

Investigations into this gap eventually resulted in astronomers observing several bodies of various size. This led to the creation of the term “asteroid” (Greek for ‘star-like’ or ‘star-shaped’), as well as “Asteroid Belt”, once it became clear just how many there were. Through various methods, astronomers have since confirmed the existence of several million objects between the orbit of Mars and Jupiter. They have also determined, with a certain degree of accuracy, how far it is from our planet.

Structure and Composition:

The Asteroid Belt consists of several large bodies, coupled with millions of smaller size. The larger bodies, such as Ceres, Vesta, Pallas, and Hygiea, account for half of the belt’s total mass, with almost one-third accounted for by Ceres alone. Beyond that, over 200 asteroids that are larger than 100 km in diameter, and 0.7–1.7 million asteroids with a diameter of 1 km or more.

The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons
The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons

It total, the Asteroid Belt’s mass is estimated to be 2.8×1021 to 3.2×1021 kilograms – which is equivalent to about 4% of the Moon’s mass. While most asteroids are composed of rock, a small portion of them contain metals such as iron and nickel. The remaining asteroids are made up of a mix of these, along with carbon-rich materials. Some of the more distant asteroids tend to contain more ices and volatiles, which includes water ice.

Despite the impressive number of objects contained within the belt, the Main Belt’s asteroids are also spread over a very large volume of space. As a result, the average distance between objects is roughly 965,600 km (600,000 miles), meaning that the Main Belt consists largely of empty space. In fact, due to the low density of materials within the Belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.

The main (or core) population of the asteroid belt is sometimes divided into three zones, which are based on what is known as “Kirkwood gaps”. Named after Daniel Kirkwood, who announced in 1866 the discovery of gaps in the distance of asteroids, these gaps are similar to what is seen with Saturn’s and other gas giants’ systems of rings.

Orbit Around the Sun:

Located between Mars and Jupiter, the belt ranges in distance between 2.2 and 3.2 astronomical units (AU) from the Sun – 329 million to 478.7 million km (204.43 million to 297.45 million mi). It is also an estimated 1 AU thick (149.6 million km, or 93 million mi), meaning that it occupies the same amount of distance as what lies between the Earth to the Sun.

The distance of an asteroid from the Sun (its semi-major axis) depends upon its distribution into one of three different zones based on the Belt’s “Kirkwood Gaps”. Zone I lies between the 4:1 resonance and 3:1 resonance Kirkwood gaps, which are roughly 2.06 and 2.5 AUs (3 to 3.74 billion km; 1.86 to 2.3 billion mi) from the Sun, respectively.

Zone II continues from the end of Zone I out to the 5:2 resonance gap, which is 2.82 AU (4.22 billion km; 2.6 mi) from the Sun. Zone III, the outermost section of the Belt, extends from the outer edge of Zone II to the 2:1 resonance gap, located some 3.28 AU (4.9 billion km; 3 billion mi) from the Sun.

Distance from Earth:

The distance between the Asteroid Belt and Earth varies considerably depending on where we measure to. Based on its average distance from the Sun, the distance between Earth and the closest edge of the Belt can be said to be between 1.2 to 2.2 AUs, or 179.5 and 329 million km (111.5 and 204.43 million mi). But of course, at any given time, part of the Asteroid Belt will be on the opposite side of the Sun relative to us as well.

From this vantage point, the distance between Earth and the Asteroid Belt ranges from 3.2 and 4.2 AU – 478.7 to 628.3 million km (297.45 to 390.4 million mi). To put that in perspective, the distance between Earth and the Asteroid Belt ranges from being slightly more than the distance between the Earth and the Sun (1 AU), to being the same as the distance between Earth and Jupiter (4.2 AU) when they are at their closest.

Naturally, any exploration or other kind of mission launched from Earth is going to take the shortest route, unless it is aiming for a specific asteroid. And even then, mission planners will time the launch to ensure that we are closest to the destination. Hence, we can safely use the estimates of 1.2 – 2.2 AU to gauge the distance between us and the Main Belt.

Even so, at its closest, getting to the Asteroid Belt would involve a bit of a hike! In short, it is approximately 179.5 million km (or 111.5 million mi) distant from us at any given time. As such, knowing just how much time and energy it would take to get their and back is going to come in handy if and when we begin mounting crewed missions to the Belt, not to mention the prospect of asteroid mining!

We have written many interesting articles on the Asteroid  Belt here at Universe Today. Here’s What is the Asteroid Belt?, Where Do Asteroids Come From?, Why the Asteroid Belt Doesn’t Threaten Spacecraft, Why isn’t the Asteroid Belt a Planet?, and 10 Interesting Facts about Asteroids.

To learn more, check out NASA’s Lunar and Planetary Science Page on asteroids, and the Hubblesite’s News Releases about Asteroids.

Astronomy Cast also some interesting episodes about asteroids, like Episode 55: The Asteroid Belt and Episode 29: Asteroids Make Bad Neighbors.

Sources:

How Do We Terraform Ceres?

A view of Ceres in natural colour, pictured by the Dawn spacecraft in May 2015. Credit: NASA/ JPL/Planetary Society/Justin Cowart

We continue our “Definitive Guide to Terraforming” series with a look at another body in our Solar System – the dwarf planet Ceres. Like many moons in the outer Solar System, Ceres is a world of ice and rock, and is the largest body in the Asteroid Belt. Humans beings could one day call it home, but could its surface also be made “Earth-like”?

In the Solar System’s Main Asteroid Belt, there are literally millions of celestial bodies to be found. And while the majority of these range in size from tiny rocks to planetesimals, there are also a handful of bodies that contain a significant percentage of the mass of the entire Asteroid Belt. Of these, the dwarf planet Ceres is the largest, constituting of about a third of the mass of the belt and being the sixth-largest body in the inner Solar System by mass and volume.

In addition to its size, Ceres is the only body in the Asteroid Belt that has achieved hydrostatic equilibrium – a state where an object becomes rounded by the force of its own gravity. On top of all that, it is believed that this dwarf planet has an interior ocean, one which contains about one-tenth of all the water found in the Earth’s oceans. For this reason, the idea of colonizing Ceres someday has some appeal, as well as terraforming.

Continue reading “How Do We Terraform Ceres?”

Dawn Just Wants To Make All The Other Probes Look Bad

An artist's illustration of NASA's Dawn spacecraft approaching Ceres. Image: NASA/JPL-Caltech.
An artist's illustration of NASA's Dawn spacecraft with its ion propulsion system approaching Ceres. Image: NASA/JPL-Caltech.

The Dawn spacecraft, NASA’s asteroid hopping probe, may not be going gently into that good night as planned. Dawn has visited Vesta and Ceres, and for now remains in orbit around Ceres. The Dawn mission was supposed to end after its rendezvous with Ceres, but now, reports say that the Dawn team has asked NASA to extend the mission to visit a third asteroid.

Dawn was launched in 2007, and in 2011 and 2012 spent 14 months at Vesta. After Vesta, it reached Ceres in March 2015, and is still in orbit there. The mission was supposed to end, but according to a report at New Scientist, the team would like to extend that mission.

Dawn is still is fully operational, and still has some xenon propellant remaining for its ion drive, so why not see what else can be achieved? There’s only a small amount of propellant left, so there’s only a limited selection of possible destinations for Dawn at this point. A journey to a far-flung destination is out of the question.

Chris Russell, of the University of California, Los Angeles, is the principal investigator for the Dawn mission. He told New Scientist, “As long as the mission extension has not been approved by NASA, I’m not going to tell you which asteroid we plan to visit,” he says. “I hope a decision won’t take months.”

If the Dawn mission is not extended, then its end won’t be very fitting for a mission that has accomplished so much. It will share the fate of some other spacecraft at the end of their lives; forever parked in a harmless orbit in an out of the way place, forgotten and left to its fate. The only other option is to crash it into a planet or other body to destroy it, like the Messenger spacecraft was crashed into Mercury at the end of its mission.

The crash and burn option isn’t available to Dawn though. The spacecraft hasn’t been sterilized. If it hasn’t been sterilized of all possible Earthly microbial life, then it is strictly forbidden to crash it into Ceres, or another body like it. Planetary protection rules are in place to avoid the possible contamination of other worlds with Earthly microbial life. It’s not likely that any microbes that may have hitched a ride aboard Dawn would have survived Dawn’s journey so far, nor is it likely that they would survive on the surface of Ceres, but rules are rules.

The secret of Dawn’s long-life and success is not only due to the excellent work by the teams responsible for the mission, it’s also due to Dawn’s ion-drive propulsion system. Ion drives, long dreamed of in science and science fiction, are making longer voyages into deep space possible.

Ion drives start very slow, but gain speed incrementally, continuing to generate thrust over long distances and long periods of time. They do all this with minimal propellant, and are ideal for long space voyages like Dawn’s.

The success of the Dawn mission is key to NASA’s plans for further deep space exploration. NASA continues to work on improving ion drives, and their latest project is the Advanced Electric Propulsion System (AEPS.) This project is meant to further develop the Hall Thruster, a type of ion-drive that NASA hopes will extend spacecraft mission capabilities, allow longer and deeper space exploration, and benefit commercial space activities as well.

The AEPS has the potential to double the thrust of current ion-drives like the one on Dawn. It’s a key component of NASA’s Journey to Mars. NASA also has plans for a robotic asteroid capture mission called Asteroid Redirect Mission, which will use the AEPS. That mission will visit an asteroid, retrieve a boulder- sized asteroid from the surface, and place it in orbit around the Moon. Eventually, astronauts will visit it and return samples to Earth for study. Very ambitious.

As far as the Dawn mission goes, it’s unclear what its next destination might be. Vesta and Ceres were chosen because they are thought be surviving protoplanets, formed at the same time as the other planets. But they stopped growing, and they remain largely undisturbed, so in that sense they are kind of locked in time, and are intriguing objects of study. There are other objects in the vicinity, but it would be pure guesswork to name any.

We are prone to looking at the past nostalgically, and thinking of prior decades as the golden age of space exploration. But as Dawn, and dozens of other current missions and scientific endeavours in space show us, we may well be in a golden age right now.

Weekly Space Hangout – Apr. 8, 2016: Space News Roundup

Host: Fraser Cain (@fcain)

Guests:

Kimberly Cartier (@AstroKimCartier )
Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg )
Dave Dickinson (www.astroguyz.com / @astroguyz)

Their stories this week:

Blue Origin, take three! (And a SpaceX launch today)

Japanese X-ray satellite

NASA Announces new planet hunting instrument

Weekend Occultations

US Navy Resumes Celestial Navigation Training

What Hit Jupiter?

We’ve had an abundance of news stories for the past few months, and not enough time to get to them all. So we’ve started a new system. Instead of adding all of the stories to the spreadsheet each week, we are now using a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Google+, Universe Today, or the Universe Today YouTube page.

You can also join in the discussion between episodes over at our Weekly Space Hangout Crew group in G+!

Dawn Starts Steep Descent to Most Dazzling Orbit of Ceres

This mosaic shows Ceres' Occator crater and surrounding terrain from an altitude of 915 miles (1,470 kilometers), as seen by NASA's Dawn spacecraft. Occator is about 60 miles (90 kilometers) across and 2 miles (4 kilometers) deep. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The most dazzling views ever seen of dwarf planet Ceres and its mysterious bright spots are what’s on tap by year’s end as NASA’s amazing Dawn spacecraft starts a gradual but steep descent over the next two months to its lowest and final orbit around the bizarre icy body.

Engineers at NASA’s Jet Propulsion Laboratory (JPL) successfully fired up the probes exotic ion propulsion system to begin lowering Dawn’s orbital altitude to less than a quarter of what it has been for the past two months of intense mapping operations.

On Oct. 23, Dawn began a seven-week-long dive that uses ion thruster #2 to reduce the spacecrafts vantage point from 915 miles (1,470 kilometers) at the High Altitude Mapping Orbit (HAMO) down to less than 235 miles (380 kilometers) above Ceres at the Low Altitude Mapping Orbit (LAMO).

Dawn is slated to arrive at LAMO by mid-December, just in time to begin delivering the long awaiting Christmas treats.

Ceres has absolutely tantalized researchers far beyond their wildest expectations.

When Dawn arrives at LAMO it will be the culmination of an eight year interplanetary voyage that began with a blastoff on September 27, 2007 by a United Launch Alliance (ULA) Delta II Heavy rocket from Space Launch Complex-17B (SLC-17B) at Cape Canaveral Air Force Station, Florida.

LAMO marks Dawn’s fourth, lowest and final science orbit at Ceres where the highest resolution observations will be gathered and images from the framing camera will achieve a resolution of 120 feet (35 meters) per pixel.

Dawn’s low altitude mapping orbit LAMO. This shows how the orbit naturally shifts slightly (relative to the sun) during the three months of LAMO, starting in blue and ending in red. The spacecraft completes each revolution in 5.5 hours, and Ceres rotates in 9.1 hours, so Dawn will be able to view the entire surface. Credit: NASA/JPL
Dawn’s low altitude mapping orbit LAMO. This shows how the orbit naturally shifts slightly (relative to the sun) during the three months of LAMO, starting in blue and ending in red. The spacecraft completes each revolution in 5.5 hours, and Ceres rotates in 9.1 hours, so Dawn will be able to view the entire surface. Credit: NASA/JPL

At LAMO, researchers hope to finally resolve the enduring mystery of the nature of the bright spots that have intrigued science and the general public since they were first glimpsed clearly early this year as Dawn was on its final approach to Ceres.

Dawn arrived in orbit this past spring on March 6, 2015.

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image was taken by NASA’s Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The science team has just released a new mosaic of the brightest spots on Ceres found at Occator crater and the surrounding terrain – see above.

The images were taken from the HAMO altitude of 915 miles (1,470 kilometers) during the first of six mapping cycles. They have a resolution of 450 feet (140 meters) per pixel.

Occator measures about 60 miles (90 kilometers) across and 2 miles (4 kilometers) deep.

This image, made using images taken by NASA's Dawn spacecraft during the mission's High Altitude Mapping Orbit (HAMO) phase, shows Occator crater on Ceres, home to a collection of intriguing bright spots.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image, made using images taken by NASA’s Dawn spacecraft during the mission’s High Altitude Mapping Orbit (HAMO) phase, shows Occator crater on Ceres, home to a collection of intriguing bright spots. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Because the spots are so bright they are generally overexposed. Therefore the team took two sets of images, with shorter and longer exposure times, to maximize the details of the interior of Occator.

“This view uses a composite of two images of Occator: one using a short exposure that captures the detail in the bright spots, and one where the background surface is captured at normal exposure.”

The bright spots at Occator crater remain the biggest Cerean mystery.

So far the imagery and other science data may point to evaporation of salty water from the interior as the source of the bright spots.

“Occasional water leakage on to the surface could leave salt there as the water would sublime,” Prof. Chris Russell, Dawn principal investigator told Universe Today exclusively.

“The big picture that is emerging is that Ceres fills a unique niche.”

“Ceres fills a unique niche between the cold icy bodies of the outer solar system, with their rock hard icy surfaces, and the water planets Mars and Earth that can support ice and water on their surfaces,” Russell, of the University of California, Los Angeles, told me.

Dawn has peeled back Ceres secrets as the spacecraft orbits lower and lower. Detailed measurements gathered to date have yielded global mineral and topographic maps from HAMO with the best resolution ever as the science team painstakingly stitched together the probes spectral and imaging products.

And the best is yet to come at LAMO.

At HAMO, Dawn’ instruments, including the Framing Camera and Visible and Infrared Spectrometer (VIR) were aimed at slightly different angles in each mapping cycle allowing the team to generate stereo views and construct 3-D maps.

“The emphasis during HAMO is to get good stereo data on the elevations of the surface topography and to get good high resolution clear and color data with the framing camera,” Russell explained.

This view from NASA's Dawn spacecraft is a color-coded topographic map of Occator crater on Ceres. Blue is the lowest elevation, and brown is the highest. The crater, which is home to the brightest spots on Ceres, is approximately 56 miles (90 kilometers wide).  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This view from NASA’s Dawn spacecraft is a color-coded topographic map of Occator crater on Ceres. Blue is the lowest elevation, and brown is the highest. The crater, which is home to the brightest spots on Ceres, is approximately 56 miles (90 kilometers wide). Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn is Earth’s first probe in human history to explore any dwarf planet, the first to explore Ceres up close and the first to orbit two celestial bodies.

The asteroid Vesta was Dawn’s first orbital target where it conducted extensive observations of the bizarre world for over a year in 2011 and 2012.

Ceres is a Texas-sized world, ranks as the largest object in the main asteroid belt between Mars and Jupiter, and may have a subsurface ocean of liquid water that could be hospitable to life.

This map-projected view of Ceres was created from images taken by NASA's Dawn spacecraft during its high-altitude mapping orbit, in August and September, 2015.  This color coded map can provide valuable insights into the mineral composition of the surface, as well as the relative ages of surface features.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This map-projected view of Ceres was created from images taken by NASA’s Dawn spacecraft during its high-altitude mapping orbit, in August and September, 2015. This color coded map can provide valuable insights into the mineral composition of the surface, as well as the relative ages of surface features. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The mission is expected to last until at least March 2016, and possibly longer, depending upon fuel reserves.

“It will end some time between March and December,” Dr. Marc Rayman, Dawn’s chief engineer and mission director based at NASA’s Jet Propulsion Laboratory, Pasadena, California, told Universe Today.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Dawn at Ceres
An artist’s conception shows NASA’s Dawn spacecraft flying above Ceres. This view incorporates actual imagery from the Dawn mission. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Invest a Night in Vesta

The planetoid Vesta, which was studied by the Dawn probe between July 2011 and September 2012. Credit: NASA

The brightest asteroid visible from Earth prowls across Cetus the Whale this month. Vesta shines at magnitude +6.3, right at the naked eye limit for observers with pristine skies, but easily coaxed into view with any pair of binoculars. With the moon now gone from the evening sky, you can start your search tonight. 

4 Vesta - its formal designation as the fourth asteroid discovered - travels along a short arc just south of the easily-found star Iota Ceti this month. Use this map to help you find Deneb Kaitos, Cetus' brightest star, and from their to Iota Ceti and Vesta. Source: Stellarium
Facing southeast around 10 p.m. local time in early October. 4 Vesta — its formal designation as the fourth asteroid discovered — travels along a short arc south of the easily-found star, Iota Ceti. Shoot a line from the Square of Pegasus south to arrive at Deneb Kaitos, Cetus’ brightest star, and from their to Iota Ceti and Vesta. Detailed map below. Source: Stellarium

Vesta came to opposition on September 28 and remains well-placed for viewing through early winter. Today’s it’s 134 million miles (225 million km) from Earth or about 5 million miles farther the Mars’ average distance from us. Although it’s one of the largest asteroids in the inner asteroid belt between Mars and Jupiter with a diameter of 326 miles (525 km), it never appears larger than a point of light even in many professional telescopes. Your binocular view will be as satisfying as the one through Mt. Palomar.

A spectacular central peak more than 14 miles high rises from the 310-mile-wide crater Rheasilvia. Credit: NASA
Like an inverted belly button, a spectacular central peak more than 14 miles high rises from the 310-mile-wide crater Rheasilvia. Credit: NASA

Discovered by the German astronomer Heinrich Olbers in March 1807, Vesta was named for the Roman goddess of home and hearth. NASA’s Dawn spacecraft, currently in orbit around another asteroid, Ceres, visited Vesta between July 2011 and September 2012, taking thousands of close-up images and measuring the mineral make-up of its soil and crust. We learned a few things while we were there:

  • Vesta is differentiated into crust, mantle and core just like the bigger planets are. That’s why you’ll sometimes hear it described as a “protoplanet”, the first of its kind discovered in our solar system.
  • A class of igneous meteorites fallen to Earth called Howardites, eucrites and diogenites (HED-meteorites) were confirmed as actual pieces of the asteroid that found their way here after being blasted into space by impact.
  • Some of the meteorites / rocks that pelted the asteroid from elsewhere in the solar system are water-rich.
  • Vesta’s covered in craters like the moon
  • A staggering-large 310-mile-wide (500 km) impact crater named Rheasilvia marks its south pole. The basin’s central peak rises to 14.3 miles (23 km), more than twice the height of Mt. Everest.
  • Gullies found on its surface suggest ancient water flows.

Cornelia Crater on the large asteroid Vesta. The crater is about 4 to 5 million years old. On the right is an inset image showing an example of curved gullies, indicated by the short white arrows, and a fan-shaped deposit, indicated by long white arrows. The inset image is about 0.62 miles (1 kilometer) wide.
Cornelia Crater on the asteroid Vesta. The crater is about 4 to 5 million years old. On the right is an inset image showing an example of curved gullies that may have been carved by water, indicated by the short white arrows, and a fan-shaped deposit, indicated by long white arrows. The inset image is about 0.62 miles (1 km) wide. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

You can see it all in your mind’s eye the next clear night. For skywatchers at mid-northern latitudes, Vesta climbs into good view around 10 o’clock in early October and 8 o’clock by month’s end. If you’re familiar with gangly Cetus, you can start with the 2nd magnitude star Deneb Kaitos, the brightest star in the constellation. If not, begin your Vestan voyage from the Great Square in Pegasus, high in the southeastern sky.

Once you've arrived at Deneb Kaitos, locate Iota Ceti, 10 degrees to the northwest. The star makes finding Vesta easy in binoculars this month. Source: Chris Marriott's SkyMap software
Once you’ve arrived at Deneb Kaitos, locate Iota Ceti, 10 degrees to the northwest. The star makes finding Vesta easy in binoculars this month. Stars shown to magnitude +7. North is up and the asteroid’s position is marked every 5 days  at 10 p.m. Vesta fades slowly during the month to mag. 6.8 by Nov. 1. CDT. Source: Chris Marriott’s SkyMap software

Drop a line through the two stars along the left side of the Square and continue it down toward the southern horizon. You’ll run right into DK. Now elevate your gaze — or aim your binoculars — one outstretched fist (10°) or about two binocular fields of view above and right of Deneb Kaitos to find Iota Ceti (mag. 3.6).

Once you’ve got Iota, the asteroid will be in your field of view close by. Use the detailed chart to pinpoint its location with respect to Iota. Easy, right? Well, I hope so. Bon voyage to Vesta!

What is the Asteroid Belt?

Artist concept of the asteroid belt. Credit: NASA

In the 18th century, observations made of all the known planets (Mercury, Venus, Earth, Mars, Jupiter, and Saturn) led astronomers to discern a pattern in their orbits. Eventually, this led to the Titius–Bode Law, which predicted the amount of space between the planets. In accordance with this law, there appeared to be a discernible gap between the orbits of Mars and Jupiter, and investigation into it led to a major discovery.

In addition to several larger objects being observed, astronomers began to notice countless smaller bodies also orbiting between Mars and Jupiter. This led to the creation of the term “asteroid”, as well as “Asteroid Belt” once it became clear just how many there were. Since that time, the term has entered common usage and become a mainstay of our astronomical models.

Discovery:

In 1800, hoping to resolve the issue created by the Titius-Bode Law, astronomer Baron Franz Xaver von Zach recruited 24 of his fellow astronomers into a club known as the “United Astronomical Society” (sometimes referred to the as “Stellar Police”). At the time, its ranks included famed astronomer William Herschel, who had discovered Uranus and its moons in the 1780s.

Ironically, the first astronomer to make a discovery in this regions was Giuseppe Piazzi – the chair of astronomy at the University of Palermo – who had been asked to join the Society but had not yet received the invitation. On January 1st, 1801, Piazzi observed a tiny object in an orbit with the exact radius predicted by the Titius-Bode law.

Ceres (left, Dawn image) compared to Tethys (right, Cassini image) at comparative scale sizes. (Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA and NASA/JPL-Caltech/SSI. Comparison by J. Major.)
Ceres (left, Dawn image) compared to Tethys (right, Cassini image) at comparative scale sizes. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA and NASA/JPL-Caltech/SSI. Comparison by J. Major.

Initially, he believed it to be a comet, but ongoing observations showed that it had no coma. This led Piazzi to consider that the object he had found – which he named “Ceres” after the Roman goddess of the harvest and patron of Sicily – could, in fact, be a planet. Fifteen months later, Heinrich Olbers ( a member of the Society) discovered a second object in the same region, which was later named 2 Pallas.

In appearance, these objects seemed indistinguishable from stars. Even under the highest telescope magnifications, they did not resolve into discs. However, their rapid movement was indicative of a shared orbit. Hence, William Herschel suggested that they be placed into a separate category called “asteroids” – Greek for “star-like”.

By 1807, further investigation revealed two new objects in the region, 3 Juno and 4 Vesta; and by 1845, 5 Astraea was found. Shortly thereafter, new objects were found at an accelerating rate, and by the early 1850s, the term “asteroids” gradually came into common use. So too did the term “Asteroid Belt”, though it is unclear who coined that particular term. However, the term “Main Belt” is often used to distinguish it from the Kuiper Belt.

One hundred asteroids had been located by mid-1868, and in 1891 the introduction of astrophotography by Max Wolf accelerated the rate of discovery even further. A total of 1,000 asteroids were found by 1921, 10,000 by 1981, and 100,000 by 2000. Modern asteroid survey systems now use automated means to locate new minor planets in ever-increasing quantities.

The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons
The asteroids of the inner Solar System and Jupiter: The donut-shaped asteroid belt is located between the orbits of Jupiter and Mars. Credit: Wikipedia Commons

Structure:

Despite common perceptions, the Asteroid Belt is mostly empty space, with the asteroids spread over a large volume of space. Nevertheless, hundreds of thousands of asteroids are currently known, and the total number ranges in the millions or more. Over 200 asteroids are known to be larger than 100 km in diameter, and a survey in the infrared wavelengths has shown that the asteroid belt has 0.7–1.7 million asteroids with a diameter of 1 km (0.6 mi) or more.

Located between Mars and Jupiter, the belt ranges from 2.2 to 3.2 astronomical units (AU) from the Sun and is 1 AU thick. Its total mass is estimated to be 2.8×1021 to 3.2×1021 kilograms – which is equivalent to about 4% of the Moon’s mass. The four largest objects – Ceres, 4 Vesta, 2 Pallas, and 10 Hygiea – account for half of the belt’s total mass, with almost one-third accounted for by Ceres alone.

The main (or core) population of the asteroid belt is sometimes divided into three zones, which are based on what is known as Kirkwood Gaps. Named after Daniel Kirkwood, who announced in 1866 the discovery of gaps in the distance of asteroids, these describe the dimensions of an asteroid’s orbit based on its semi-major axis.

Within this scheme, there are three zones. Zone I lies between the 4:1 resonance and 3:1 resonance Kirkwood gaps, which are 2.06 and 2.5 AU from the Sun respectively. Zone II continues from the end of Zone I out to the 5:2 resonance gap, which is 2.82 AU from the Sun. Zone III extends from the outer edge of Zone II to the 2:1 resonance gap at 3.28 AU.

The asteroid belt may also be divided into the inner and outer belts, with the inner belt formed by asteroids orbiting nearer to Mars than the 3:1 Kirkwood gap (2.5 AU), and the outer belt formed by those asteroids closer to Jupiter’s orbit.

The asteroids that have a radius of 2.06 AU from the Sun can be considered the inner boundary of the asteroid belt. Perturbations by Jupiter send bodies straying there into unstable orbits. Most bodies formed inside the radius of this gap were swept up by Mars (which has an aphelion at 1.67 AU) or ejected by its gravitational perturbations in the early history of the Solar System.

The temperature of the Asteroid Belt varies with the distance from the Sun. For dust particles within the belt, typical temperatures range from 200 K (-73 °C) at 2.2 AU down to 165 K (-108 °C) at 3.2 AU. However, due to rotation, the surface temperature of an asteroid can vary considerably as the sides are alternately exposed to solar radiation and then to the stellar background.

Composition:

Much like the terrestrial planets, most asteroids are composed of silicate rock while a small portion contains metals such as iron and nickel. The remaining asteroids are made up of a mix of these, along with carbon-rich materials. Some of the more distant asteroids tend to contain more ices and volatiles, which includes water ice.

Vesta seen from the Earth-orbit based Hubble Space Telescope in 2007 (left) and up close with the Dawn spacecraft in 2011. Hubble Credit: NASA, ESA, and L. McFadden (University of Maryland). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell
Vesta seen from the Earth-orbit based Hubble Space Telescope in 2007 (left) and up close with the Dawn spacecraft in 2011. Hubble Credit: NASA, ESA, and L. McFadden (University of Maryland). Dawn Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. Photo Combination: Elizabeth Howell

The Main Belt consists primarily of three categories of asteroids: C-type, or carbonaceous asteroids; S-type, or silicate asteroids; and M-type, or metallic asteroids. Carbonaceous asteroids are carbon-rich, dominate the belt’s outer regions, and comprise over 75% of the visible asteroids. Their surface composition is similar to that of carbonaceous chondrite meteorites while their spectra is similar to what the early Solar System’s is believed to be.

S-type (silicate-rich) asteroids are more common toward the inner region of the belt, within 2.5 AU of the Sun. These are typically composed of silicates and some metals, but not a significant amount of carbonaceous compounds. This indicates that their materials have been modified significantly over time, most likely through melting and reformation.

M-type (metal-rich) asteroids form about 10% of the total population and are composed of iron-nickel and some silicate compounds. Some are believed to have originated from the metallic cores of differentiated asteroids, which were then fragmented from collisions. Within the asteroid belt, the distribution of these types of asteroids peaks at a semi-major axis of about 2.7 AU from the Sun.

There’s also the mysterious and relatively rare V-type (or basaltic) asteroids. This group takes their name from the fact that until 2001, most basaltic bodies in the Asteroid Belt were believed to have originated from the asteroid Vesta. However, the discovery of basaltic asteroids with different chemical compositions suggests a different origin. Current theories of asteroid formation predict that the V-type asteroids should be more plentiful, but 99% of those that have been predicted are currently missing.

Families and Groups:

Approximately one-third of the asteroids in the asteroid belt are members of an asteroid family. These are based on similarities in orbital elements – such as semi-major axis, eccentricity, orbital inclinations, and similar spectral features, all of which indicate a common origin. Most likely, this would have involved collisions between larger objects (with a mean radius of ~10 km) that then broke up into smaller bodies.

This artist's conception shows how families of asteroids are created. Credit: NASA/JPL-Caltech
This artist’s conception shows how families of asteroids are created. Credit: NASA/JPL-Caltech

Some of the most prominent families in the asteroid belt are the Flora, Eunomia, Koronis, Eos, and Themis families. The Flora family, one of the largest with more than 800 known members, may have formed from a collision less than a billion years ago. Located within the inner region of the Belt, this family is made up of S-type asteroids and accounts for roughly 4-5% of all Belt objects.

The Eunomia family is another large grouping of S-type asteroids, which takes its name from the Greek goddess Eunomia (goddess of law and good order). It is the most prominent family in the intermediate asteroid belt and accounts for 5% of all asteroids.

The Koronis family consists of 300 known asteroids which are thought to have been formed at least two billion years ago by a collision. The largest known, 208 Lacrimosa, is about 41 km (25 mi) in diameter, while an additional 20 more have been found that are larger than 25 km in diameter.

The Eos (or Eoan) family is a prominent family of asteroids that orbit the Sun at a distance of 2.96 – 3.03 AUs, and are believed to have formed from a collision 1-2 billion years ago. It consists of 4,400 known members that resemble the S-type asteroid category. However, the examination of Eos and other family members in the infrared show some differences with the S-type, thus why they have their own category (K-type asteroids).

Asteroids we've seen up close show cratered surfaces similar to yet different from much of the cratering on comets. Credit: NASA
Asteroids we’ve seen up close show cratered surfaces similar to yet different from much of the cratering on comets. Credit: NASA

The Themis asteroid family is found in the outer portion of the asteroid belt, at a mean distance of 3.13 AU from the Sun.  This core group includes the asteroid 24 Themis (for which it is named) and is one of the more populous asteroid families. It is made up of C-type asteroids with a composition believed to be similar to that of carbonaceous chondrites and consists of a well-defined core of larger asteroids and a surrounding region of smaller ones.

The largest asteroid to be a true member of a family is 4 Vesta. The Vesta family is believed to have formed as the result of a crater-forming impact on Vesta. Likewise, the HED meteorites may also have originated from Vesta as a result of this collision.

Along with the asteroid bodies, the asteroid belt also contains bands of dust with particle radii of up to a few hundred micrometers. This fine material is produced, at least in part, from collisions between asteroids, and by the impact of micrometeorites upon the asteroids. Three prominent bands of dust have been found within the asteroid belt – which have similar orbital inclinations as the Eos, Koronis, and Themis asteroid families – and so are possibly associated with those groupings.

Origin:

Originally, the Asteroid Belt was thought to be the remnants of a much larger planet that occupied the region between the orbits of Mars and Jupiter. This theory was originally suggested by Heinrich Olbders to William Herschel as a possible explanation for the existence of Ceres and Pallas. However, this hypothesis has since fallen out of favor for a number of reasons.

Artist's impression of the early Solar System, where collision between particles in an accretion disc led to the formation of planetesimals and eventually planets. Credit: NASA/JPL-Caltech
Artist’s impression of the early Solar System, where collisions between particles in an accretion disc led to the formation of planetesimals and eventually planets. Credit: NASA/JPL-Caltech

First, there is the amount of energy it would have required to destroy a planet, which would have been staggering. Second, there is the fact that the entire mass of the Belt is only 4% that of the Moon.  Third, the significant chemical differences between the asteroids do not point towards them having been once part of a single planet.

Today, the scientific consensus is that, rather than fragmenting from a progenitor planet, the asteroids are remnants from the early Solar System that never formed a planet at all. During the first few million years of the Solar System’s history, when gravitational accretion led to the formation of the planets, clumps of matter in an accretion disc coalesced to form planetesimals. These, in turn, came together to form planets.

However, within the region of the Asteroid Belt, planetesimals were too strongly perturbed by Jupiter’s gravity to form a planet. These objects would continue to orbit the Sun as before, occasionally colliding and producing smaller fragments and dust.

During the early history of the Solar System, the asteroids also melted to some degree, allowing elements within them to be partially or completely differentiated by mass. However, this period would have been necessarily brief due to their relatively small size, and likely ended about 4.5 billion years ago, in the first tens of millions of years of the Solar System’s formation.

Though they are dated to the early history of the Solar System, the asteroids (as they are today) are not samples of its primordial self. They have undergone considerable evolution since their formation, including internal heating, surface melting from impacts, space weathering from radiation, and bombardment by micrometeorites. Hence, the Asteroid Belt today is believed to contain only a small fraction of the mass of the primordial belt.

Computer simulations suggest that the original asteroid belt may have contained as much mass as Earth. Primarily because of gravitational perturbations, most of the material was ejected from the belt a million years after its formation, leaving behind less than 0.1% of the original mass. Since then, the size distribution of the asteroid belt is believed to have remained relatively stable.

When the asteroid belt was first formed, the temperatures at a distance of 2.7 AU from the Sun formed a “snow line” below the freezing point of water. Essentially, planetesimals formed beyond this radius were able to accumulate ice, some of which may have provided a water source of Earth’s oceans (even more so than comets).

Exploration:

The asteroid belt is so thinly populated that several unmanned spacecraft have been able to move through it; either as part of a long-range mission to the outer Solar System, or (in recent years) as a mission to study larger Asteroid Belt objects. In fact, due to the low density of materials within the Belt, the odds of a probe running into an asteroid are now estimated at less than one in a billion.

Artist's concept of the Dawn spacecraft arriving at Vesta. Image credit: NASA/JPL-Caltech
Artist’s concept of the Dawn spacecraft arriving at Vesta. Image credit: NASA/JPL-Caltech

The first spacecraft to make a journey through the asteroid belt was the Pioneer 10 spacecraft, which entered the region on July 16th, 1972. As part of a mission to Jupiter, the craft successfully navigated through the Belt and conducted a flyby of Jupiter (which culminated in December of 1973) before becoming the first spacecraft to achieve escape velocity from the Solar System.

At the time, there were concerns that the debris would pose a hazard to the Pioneer 10 space probe. But since that mission, 11 additional spacecraft passed through the Asteroid Belt without incident. These included Pioneer 11, Voyager 1 and 2, Ulysses, Galileo, NEAR, Cassini, Stardust, New Horizons, the ESA’s Rosetta, and most recently, the Dawn spacecraft.

For the most part, these missions were part of missions to the outer Solar System, where opportunities to photograph and study asteroids were brief. Only the Dawn, NEAR and JAXA’s Hayabusa missions have studied asteroids for a protracted period in orbit and at the surface. Dawn explored Vesta from July 2011 to September 2012 and is currently orbiting Ceres (and sending back many interesting pictures of its surface features).

And someday, if all goes well, humanity might even be in a position to begin mining the asteroid belt for resources – such as precious metals, minerals, and volatiles. These resources could be mined from an asteroid and then used in space of in-situ utilization (i.e. turning them into construction materials and rocket propellant), or brought back to Earth.

It is even possible that humanity might one day colonize larger asteroids and establish outposts throughout the Belt. In the meantime, there’s still plenty of exploring left to do, and quite possibly millions of more objects out there to study.

We have written many articles about the asteroid belt for Universe Today. Here’s Where Do Asteroids Come From?, Why the Asteroid Belt Doesn’t Threaten Spacecraft, and Why isn’t the Asteroid Belt a Planet?.

Also, be sure to learn which is the Largest Asteroid in the Solar System, and about the asteroid named after Leonard Nimoy. And here’s 10 Interesting Facts about Asteroids.

We also have many interesting articles about the Dawn spacecraft’s mission to Vesta and Ceres, and asteroid mining.

To learn more, check out NASA’s Lunar and Planetary Science Page on asteroids, and the Hubblesite’s News Releases about Asteroids.

Astronomy Cast also some interesting episodes about asteroids, like Episode 55: The Asteroid Belt and Episode 29: Asteroids Make Bad Neighbors.

Sources:

Ceres Bright Spots Keep Their Secret Even From 2,700 miles Up

The brightest spots on dwarf planet Ceres are seen in this image taken by NASA's Dawn spacecraft on June 6, 2015. This is among the first snapshots from Dawn's second mapping orbit, which is 2,700 miles (4,400 kilometers) in altitude. The resolution is 1,400 feet (410 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Don’t get me wrong. I love this new photo. Dawn snapped it from its second mapping orbit from 2,700 miles up on June 6. The number of craters and the detail visible in the parallel troughs snaking through the scene are breathtaking. That’s why I hate to niggle about the white spots.

While they appear larger and sharper than images taken in May from a greater distance, they’re too bright to show much new detail. I can’t help but wonder if mission scientists might adjust the exposure a bit the next time around.

Tighter crop on the 55-mile crater that's home to the cluster of white spots. Credit:
Tighter crop on the 55-mile (90-km) crater that’s home to the cluster of white spots. I applied a small amount of sharpening and toned down the spots just a little. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When photographing bright objects here on Earth, we expose “for the highlights” or the bright areas in photos to avoid overexposure and loss of detail.

What a satisfying view! NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
What a satisfying view! This image, also taken on June 6, shows a large crater in Ceres’ southern hemisphere as well as cracks and radial fractures possibly associated with impacts. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Naturally, when you try to capture details in something bright, your background will go dark. But that might be what’s needed here – a change in exposure to reveal more detail in the spots at the expense of the landscape. Doubtless NASA will release enlarged and detailed images of these enigmatic dots later this summer. Just call me impatient.

Scientists still don’t understand the nature of the spot cluster, but reflective ice or salt remain the strongest possibilities.

What is this - the Moon? A view of craters in Ceres' northern hemisphere from June 6, 2015. Credit: Bright Spots Shine in Newest Dawn Ceres Images VIR Image of Ceres, May 2015Bright Spots in Ceres' Second Mapping OrbitCeres' Southern Hemisphere in Survey Ceres' Northern Hemisphere in Survey Craters in the northern hemisphere of dwarf planet Ceres are seen in this image taken by NASA's Dawn spacecraft on June 6, 2015. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
A lunar-like landscape in Ceres’ northern hemisphere photographed on June 6, 2015. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“The bright spots in this configuration make Ceres unique from anything we’ve seen before in the solar system,” said Chris Russell, principal investigator for the Dawn mission. “The science team is working to understand their source. Reflection from ice is the leading candidate in my mind, but the team continues to consider alternate possibilities, such as salt.”

Images from Dawn's visible and infrared mapping spectrometer (VIR) show a portion of Ceres' cratered northern hemisphere, taken on May 16, 2015. From top to bottom, the views include a black-and-white image, a true-color view and a temperature image. The true-color view contains reddish dots that are image artifacts, which are not part of Ceres' surface.
Images from Dawn’s visible and infrared mapping spectrometer (VIR) show a portion of Ceres’ cratered northern hemisphere, taken on May 16, 2015 from 4,500 miles (7,300 km) away. From top to bottom, the views include a black-and-white image, a true-color view and a temperature image. In the bottom infrared view, the lightest areas are hottest and darkest are the coolest. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

It’s interesting to compare and contrast Ceres with Dawn’s first target asteroid, Vesta. Craters of every size dominate both small worlds, but Ceres shows evidence of a more activity in the form of relaxed crater rims (possibly due to ice deformation), landslides and collapsed structures.

Dawn takes about three days to orbit at its current 2,700 mile altitude. It will continue to take photos and make science observations until dropping into a new lower altitude of 900 miles (1, 450 km) in early August.

Dawn Does Dramatic Fly Over of Ceres, Enters Lower Mapping Orbit: Video

This image of Ceres was taken by NASA's Dawn spacecraft on May 7, 2015, from a distance of 8,400 miles (13,600 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Video caption: This new video animation of Ceres was created from images taken by NASA’s Dawn spacecraft at altitudes of 8,400 miles (13,600 kilometers) and 3,200 miles (5,100 kilometers) away. Vertical dimension has been exaggerated by a factor of two and a star field added. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Scientists leading NASA’s Dawn mission to dwarf planet Ceres have just released a brand new animated video showing a dramatic fly over of the heavily cratered world featuring its mysterious bright spots whose exact origin and nature remain elusive.

Meanwhile, the venerable probe has just successfully entered its new and lower mapping orbit on June 3 from which researchers hope to glean hordes of new data to unravel the secrets of the bright spots and unlock the nature of Ceres origin and evolution.

Pockmarked Ceres is an alien world unlike any other in our solar system.

“Dawn completed the maneuvering to reach its second mapping orbit and stopped ion-thrusting on schedule. Since May 9, the spacecraft has reduced its orbital altitude from 8,400 miles (13,600 kilometers) to 2,700 miles (4,400 kilometers),” reported Marc Rayman, Dawn Chief Engineer/ Mission Director of NASA’s Jet Propulsion Laboratory, Pasadena, California.

“As Dawn flew 2,700 miles (4,400 kilometers) over Ceres’ north pole on June 5 that marked the beginning of the new mapping phase, and Dawn began taking photos and making other measurements on schedule.”

Each orbit of Dawn around Ceres at this second science mapping orbit lasts 3.1 days.

The new video was created by the research team based on observations of Ceres that were taken from Dawn’s initial mapping orbit, at an altitude of 8,400 miles (13,600 kilometers), as well as the most recent navigational images taken from 3,200 miles (5,100 kilometers), according to NASA.

It is based on data from over 80 images captured by Dawn’s framing cameras which were provided The German Aerospace Center (DLR) and Max Planck Institute for Solar System Research in Göttingen, Germany.

The images were used to provide a three-dimensional video view. The vertical dimension is exaggerated by a factor of two in the video.

“We used a three-dimensional terrain model that we had produced based on the images acquired so far,” said Dawn team member Ralf Jaumann of the German Aerospace Center (DLR), in Berlin.

“They will become increasingly detailed as the mission progresses — with each additional orbit bringing us closer to the surface.”

Imagery of the mysterious bright spots show them to seemingly be sheets of many spots of water ice, and not just single huge patches. The famous duo of ice spots are located inside the middle of a 57 miles (92 kilometers) wide crater situated in Ceres northern hemisphere.

Dawn is an international science mission managed by NASA’s Jet Propulsion Laboratory, Pasadena, California. The trio of science instruments are from the US, Germany and Italy.

The framing camera was provided by the Max Planck Institute for Solar System Research, Göttingen, Germany and the German Aerospace Center (DLR).

This view of Ceres was taken by Dawn spacecraft on May 23 and shows finer detail becoming visible on the dwarf planet. The spacecraft snapped the image at a distance of 3,200 miles (5,100 kilometers) with a resolution of 1,600 feet (480 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This view of Ceres was taken by Dawn spacecraft on May 23 and shows finer detail becoming visible on the dwarf planet. The spacecraft snapped the image at a distance of 3,200 miles (5,100 kilometers) with a resolution of 1,600 feet (480 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn will spend most if June at this second mapping orbit before firing up the ion engines and spiraling yet lower for a mission expected to last until at least June 2016.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Dawn’s spiral descent from its first mapping orbit (RC3) to its second (survey). The two mapping orbits are shown in green. The color of Dawn’s trajectory progresses through the spectrum from blue, when it began ion-thrusting on May 9, to red, when ion-thrusting concludes on June 3. The red dashed sections show where Dawn is coasting, mostly for telecommunications. The first two coast periods include OpNav 8 and 9. Image credit: NASA/JPL-Caltech
Dawn’s spiral descent from its first mapping orbit (RC3) to its second (survey). The two mapping orbits are shown in green. The color of Dawn’s trajectory progresses through the spectrum from blue, when it began ion-thrusting on May 9, to red, when ion-thrusting concludes on June 3. The red dashed sections show where Dawn is coasting, mostly for telecommunications. The first two coast periods include OpNav 8 and 9. Image credit: NASA/JPL-Caltech

How Dense is the Asteroid Belt?

How Dense is the Asteroid Belt?

We’ve seen way too many science fiction episodes that show asteroid belts as dense fields of tumbling boulders. How dense is the asteroid belt, and how to spacecraft survive getting through them?

For the purposes of revenue, lazy storytelling, and whatever it is Zak Snyder tells himself to get out of bed in the morning, when it comes to asteroids, Science fiction and video games creators have done something of disservice to your perception of reality.

Take a fond trip down sci-fi memory lane, and think about the time someone, possibly you, has had to dogfight or navigate through yet another frakkin’ asteroid belt. Huge space rocks tumbling dangerously in space! Action! Adventure! Only the skilled pilot, with her trusty astromecha-doplis ship can maneuver through the dense cluster of space boulders, dodging this way and that, avoiding certain collision.

And then she shoots her pew pew laser breaking up larger asteroids up into smaller ones, possibly obliterating them entirely depending on the cg budget. Inevitably, there’s bobbing and weaving. Pursuit craft will clip their wings on asteroids, spinning off into nearby tango. Some will fly straight into a space boulder.

Finally you’ll thread the needle on a pair of asteroids and the last ship of the whatever they’re called clicky clacky mantis Zorak bug people will try and catch you, but he/it won’t be quite so lucky. Poetically getting squashed like… a… bug. Sackhoff for the win, pilot victorious.

Okay, you probably knew the laser part is totally fake. I mean, everybody knows you can’t hear sounds in space. Outside of Starbuck being awesome, is that at all realistic? And if so, how does NASA maneuver unmanned spacecraft through that boulder-strewn grand canyon death trap to reach the outer planets?

The asteroid belt is a vast region between the orbits of Mars and Jupiter. Our collection of space rocks starts around 300 million kilometers from the Sun and ends around 500 million kilometers. The first asteroid, the dwarf planet Ceres which measures 950 km across, was discovered in 1801, with a “That’s funny.”. Soon after astronomers turned up many more small objects orbiting in this region at the “Oooh neat!” stage.

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech
Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech

They realized it was a vast belt of material orbiting the Sun, with I suspect a “We’re all gonna die.”. To date, almost half a million asteroids have been discovered, most of which are in the main belt.

As mentioned in a another video, gathering up all the material in the asteroid belt and gluing it together makes a mass around 4% of the Moon. So, in case one of your friends gets excited and suggests it was a failed planet, you can bust out that stat and publicly shame them for being so 1996, Goodwill Hunting style. You like asteroids? How about them asteroids?

There’s a few hundred larger than 100 km across, and tens of millions of rocks a hundred meters across. Any one of these could ruin a good day, or bring a bad day to a welcome firey close for either a depressed wayfaring spacecraft or a little bluegreen speck of a planet. Which sounds dangerous all the way around.

Fortunately, our asteroid belt is a vast region of space. Let’s wind up the perspective-o-meter. If you divide the total number of objects in the field by the volume of space that asteroid belt takes up, each space rock is separated by hundreds of thousands of kilometers. Think of it as gravity’s remarkably spacious zen rock garden.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.

As a result, when NASA engineers plot a spacecraft’s route through the asteroid belt, they don’t expect to make a close encounter with any asteroids – in fact, they’ll change its flight path to intercept asteroids en route. Because hey look, asteroid!

Even though Ceres was discovered in 1801, it’s never been observed up close, until now. NASA’s Dawn spacecraft already visited Asteroid Vesta, and by the time you’re watching this video, it will have captured close-up images of the surface of Ceres.

Once again, science fiction creatives sold us out to drama over hard science. If you’re passing through an asteroid belt, you won’t need to dodge and weave to avoid the space rocks. In fact, you probably wouldn’t even know you were passing through a belt at all. You’d have to go way the heck over there to even get a nearby look at one of the bloody things. So we’re safe, our speck is safe, and all the little spacecraft are safe…. for now.

Which dramatic version of “asteroids” are you most fond of? Tell us in the comments below.