Symbols of the Planets

In our long history of staring up at the stars, human beings have assigned various qualities, names, and symbols for all the objects they have found there. Determined to find patterns in the heavens that might shed light on life here on Earth, many of these designations ascribed behavior to the celestial bodies.

When it comes to assigning signs to the planets, astrologists and astronomers – which were entwined disciplines in the past -made sure that these particular symbols were linked to the planets’ names or their history in some way.

Consider the planet Mercury, named after the Roman god who was himself the messenger of the gods, noted for his speed and swiftness. The name was assigned to this body largely because it is the planet closest to the Sun, and which therefore has the fastest rotation period. Hence, the symbol is meant to represent Mercury’s helmet and caduceus – a herald’s staff with snakes and wings intertwined.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Mercury, as imaged by the MESSENGER spacecraft, which was named after the messenger of the gods because it has the fastest orbit around the Sun. Image Credit: NASA/JHU/Carnegie Institution.

Venus:
Venus’ symbol has more than one meaning. Not only is it the sign for “female”, but it also represents the goddess Venus’ hand mirror. This representation of femininity makes sense considering Venus was the goddess of love and beauty. The symbol is also the chemical sign for copper; since copper was used to make mirrors in ancient times.

Earth:
Earth’s sign also has a variety of meanings, although it does not refer to a mythological god. The most popular view is that the circle with a cross in the middle represents the four main compass points.  It has also been interpreted as the Globus Cruciger, an old Christian symbol for Christ’s reign on Earth.

This symbol is not just limited to Christianity though, and has been used in various culture around the world. These include, but are not limited to,  Norse mythology (where it appears as the Solar or Odin’s Cross), Native American cultures (where it typically represented the four spirits of direction and the four sacred elements), the Celtic Cross, the Greek Cross, and the Egyptian Ankh.

In fact, perhaps owing to the simplicity of the design, cross-shaped incisions have made appearances as petroglyphs in European cult caves dating all the way back to the beginning of the Upper Paleolithic, and throughout prehistory to the Iron Age.

Mars, as photographed with the Mars Global Surveyor, is identified with the Roman god of war. Credit: NASA
Mars, as photographed with the Mars Global Surveyor, is identified with the Roman god of war. Credit: NASA

Mars:
Mars is named after the Roman god of war, owing perhaps to the planet’s reddish hue, which gives it the color of blood. For this reason, the symbol associated with Mars represents the god of wars’ shield and spear. Additionally, it is the same sign as the one used to represent “male”, and hence is associated with self-assertion, aggression, sexuality, energy, strength, ambition and impulsiveness.

Jupiter:
Jupiter’s sign, which looks like an ornate, oddly shaped “four,” also stands for a number of symbols. It has been said to represent an eagle, which is Jupiter’s bird. Additionally, the symbol can stand for a “Z,” which is the first letter of Zeus  – who was Jupiter’s Greek counterpart.

The line through the symbol is consistent with this, since it would indicate that it was an abbreviation for Zeus’ name. And last, but not least, there is the addition of the swirled line which is believed to represent a lighting bolt – which just happens to  Jupiter’s (and Zeus’) weapon of choice.

Saturn:
Like Jupiter, Saturn resembles another recognizable character – this time, it’s an “h.” However, this symbol is actually supposed to represent Saturn’s scythe or sickle, because Saturn is named after the Roman god of agriculture.

Jupiter's Great Red Spot and Ganymede's Shadow. Image Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)
Jupiter, the largest planet in the Solar System, is appropriately named after the Roman father of the gods. Credit: NASA/ESA/A. Simon (Goddard Space Flight Center)

Uranus:
The sign for Uranus is a combination of two other signs – Mars’ sign and the symbol of the Sun – because the planet is connected to these two in mythology. Uranus represented heaven in Roman mythology, and this ancient civilization believed that the Sun’s light and Mars’ power ruled the heavens.

Neptune:
Neptune’s sign is linked to the sea god Neptune, who the planet was named after. Appropriately, the symbol represents this planet is in the shape of the sea god’s trident.

Pluto:
Although Pluto was demoted to a dwarf planet, it still has a symbol. Pluto’s sign is a combination of a “P” and a “L,” which are the first two letters in Pluto as well as the initials of Percival Lowell, the astronomer who discovered the planet.

Other Objects:
The Moon is represented by a crescent shape, which is a clear allusion to how the Moon appears in the night sky more often than not. Since the Moon is also tied to people’s perceptions, moods, and emotional make-up, the symbol has also come to represents the mind’s receptivity.

A full moon captured July 18, 2008. Credit: NASA/Sean Smith
A full moon captured July 18, 2008. Credit: NASA/Sean Smith

And then there’s the sun, which is represented by a circle with a dot in the middle. In the case of the Sun, this symbol represents the divine spirit (circle) surrounding the seed of potential, which is a direct association with ancient Sun worship and the central role Sun god’s played in ancient pantheons.

The planets have played an important role in the culture and astrological systems of every human culture. Because of this, the symbols, names, and terms that denote them continue to hold special significance in our hearts and minds.

We have many interesting articles on the planets here at Universe Today. For example, here is other articles including symbols of the planets and symbols of the Sun and Moon.

If you are looking for more information try signs of the planets and symbols of the minor planets.

Astronomy Cast has an episode on each planet including Saturn.

Universe Today has articles you will want to check out on symbols for the Sun and Moon and symbol for Earth.

If you are looking for more information, take a look at this website from NASA on the astronomical symbols or on the symbol for Pluto.

Astronomy Cast has an episode on each planet, so listen to all of them in order starting with Mercury.

Orbits of the Planets

[/caption]

Centuries ago, people believed that the Earth was the center of the Solar System. Slowly, that view was replaced with the heliocentric view. With that change came the realization that the planets orbit the Sun.

When Pluto was reclassified as a dwarf planet, Mercury became the planet with the most eccentric orbit. The eccentricity of an orbit is a measurement of how much the orbit deviates from a circular shape. If an orbit is a perfect circle, it has an eccentricity of zero, and that number increases with an increase in eccentricity. Mercury has an eccentricity of .21. Its orbit ranges from 46 million kilometers at the closest point to the Sun to 70 million kilometers at the farthest point. The closest point to the Sun in an orbit is called the perihelion, and the farthest point is the aphelion. Mercury is the fastest planet to orbit the Sun at approximately Earth 88 days.

Venus has the least eccentricity of any planet in our Solar System – eccentricity of .007 – with a nearly perfect circular orbit. Venus’ orbit ranges from 107 million kilometers at the perihelion to 109 million kilometers from the Sun. It takes 224.7 of our days to orbit the Sun. A day on Venus is actually longer than a year because the planet rotates so slowly. Seen from the Sun’s north pole, all of the planets rotate counter-clockwise, but Venus actually rotates clockwise; it is the only planet to do that.

Earth also has a very low eccentricity of .017. On average, the planet is about 150 million kilometers from the Sun, but it can range from 147 million kilometers to 152 million kilometers. It takes our planet roughly 365.256 days to orbit the Sun, which is the reason for leap years.

Mars has an eccentricity of .093 making it one of the most eccentric orbits in our Solar System. Mars perihelion is 207 million kilometers and its aphelion is 249 million kilometers from the Sun. Over time, Mars’ orbit has become more eccentric. It takes 687 Earth days to orbit the Sun.

Jupiter has an eccentricity of .048 with a perihelion of 741 million kilometers and an aphelion of 778 million kilometers. It takes 4331 Earth days – 11.86 of our years – for Jupiter to orbit the Sun.

Saturn has an eccentricity of .056. At its closest point, Saturn is 1.35 billion kilometers from the Sun, and 1.51 billion kilometers away at its farthest point. Depending on what position it is in its orbit, Saturn’s rings are fully visible or almost invisible. The planet takes 29.7 years to orbit the Sun. In fact, since it was discovered in 1610, Saturn has only orbited approximately 13 times. Earth has orbited the Sun almost 400 times since then.

Uranus has a perihelion of 2.75 billion kilometers and an aphelion of 3 billion kilometers from the Sun. Its eccentricity is .047. It takes Uranus 84.3 Earth years to orbit the Sun. Uranus is unique because it actually rotates on its side with an axial tilt of almost 99°.

Neptune’s eccentricity is .009, almost as low as Venus’. The planet has a perihelion of 4.45 billion kilometers and an aphelion of 4.55 billion kilometers. Since Pluto was reclassified as a dwarf planet, Neptune is the planet with an orbit farthest from the Sun.

Universe Today has articles on orbits of all the planets including Mercury and Mars.

There are a number of other sites, including one with animations of the orbits and what an orbit is.

Astronomy Cast has an episode on the orbit of the planets.

What are the Sizes of the Planets?

It is often difficult to grasp just how large the planets actually are. There are a number of ways to measure a planet, including diameter, volume, and surface area.

Mercury is the smallest planet in our Solar System since Pluto was demoted to a dwarf planet. It has a diameter of 4,879 km, and a surface area of 17.48 x 107 km2, which is only about 11% of Earth’s surface area. Mercury’s volume is even smaller in comparison at 6.083 x 1010 km3, which is only 5.4% the volume of Earth.

Venus is similar in size to Earth, which earned it the title of Earth’s twin. Venus has a diameter of 12,100 km and a surface area of 4.6 x 108 km2. These measurements are 95% and 90% of Earth’s diameter and surface area respectively. With a volume of 9.38 x 1011 km3, Venus’ volume is 86% of  Earth’s.

Earth has a diameter of 12,742 km and a surface area of 5.1 x 108 km2. Its volume of 1.08 x 1012 km3 gives the planet the largest volume of any of the terrestrial planets.

Mars is also a small planet, the second smallest in our Solar System. Mars’ diameter is 6,792 km, only about 53% of Earth’s diameter. At only 28% of Earth’s surface area, Mars has a very small surface area of 1.45 x 108 km2. Mars’ volume of 1.63 x 1011 km3 is only 15% of Earth’s volume.

All of the gas giants are larger in size than the four inner planets. Jupiter is the largest planet in our Solar System. It has a diameter of 143,000 km, which is more than 11 times the size of Earth’s diameter. The numbers only get larger from there. Jupiter has a surface area of 6.22 x 1010 km2. That is 122 times greater than Earth’s surface area. Jupiter’s volume of 1.43 x 1015 km3 is an incredible number. You can fit 1321 Earths inside Jupiter.

Saturn is the second largest planet in our Solar System. It has a diameter of 120,536 km across the equator, and a surface area of 4.27 x 1010 km2. With a volume of 8.27 x 1014 km3, Saturn can hold 764 Earths inside.

Uranus has a diameter of 51,118 km and a surface area of 8.1 x 109 km2. Although Uranus is much smaller than Jupiter, it is still large. With a volume of 6.83 x 1013 km3, you could fit 63 Earths inside the gas giant.

Neptune is slightly smaller than Uranus, but still very large. The planet has a diameter of 49,500 km. You could fit 57.7 Earths inside Neptune, which has a volume of 6.25 x1013 km3.  Neptune has a surface area of 7.64 x 109 km2, which is 15 times Earth’s surface area.

We have written many interesting articles about the Solar Planets here at Universe Today. Here’s tWhat are the Different Masses of the Planets?, What Is The Atmosphere Like On Other Planets?, What is the Average Surface Temperatures of the Planets? and What are the Diameters of the Planets?

For more information, check out this website to learn all about the planets and this page from NASA to learn about the planets.

Astronomy Cast has an episode on each of the planets including Mercury.

Weight on Other Planets

[/caption]
Many children, and even adults, dream of visiting other planets and wonder what it would be like to stand on another planet. For one thing, your weight would be different on another planet, depending on a number of factors including the mass of the planet and how far you are away from the center of the planet.

Before we start, it’s important to understand that the kilogram is actually a measurement of your mass. And your mass doesn’t change when you go anywhere in the Universe and experience different amounts of gravity. Your weight is best measured in newtons. But since your bathroom doesn’t measure your weight in newtons, we’ll use kilograms. This is what your bathroom scale would say if you stepped on another world.

Mercury is the smallest planet in our Solar System, but it is dense. Because Mercury is so small, it has very little gravity. If you weighed 68 kg on Earth, you would only weigh 25.7 kg on Mercury. 

Venus is very close to Earth in size and mass. Venus’ mass is roughly 90% of the mass of the Earth. Thus, it is no surprise that someone would weigh a similar amount on Venus. Someone who weighed 68 kg on Earth would weigh 61.6 kg on Venus.

Mars is quite a bit smaller than Earth with only 11% of our planet’s mass. Mars is larger than Mercury, but it is not as dense as the smaller planet. If you weighed 68 kg on Earth then you would weigh 25.6 kg on Mars. Since Pluto was demoted to a dwarf planet, Mars became the planet where you would weigh the least.

Jupiter is the largest planet in our Solar System with the most mass. Because of Jupiter’s mass, you would weigh more on that planet than on any other one in our Solar System. If you weighed 68 kg on Earth then you would weigh 160.7 kg on Jupiter, over twice your normal weight. That is if you could actually stand on Jupiter’s surface, which is impossible because it is a gas giant, and gas giants do not have solid surfaces.

Saturn is a gas giant best known for its planetary rings system. It is also the second biggest planet in our Solar System. Despite its mass though, the planet has a very low density and a lower gravity than Earth. If you weighed 68 kg on Earth, you would weigh 72.3 kg on Saturn.

Uranus is a gas giant without a solid surface. Although Uranus is larger in size than Neptune, it has less mass and therefore less gravity. You would only weigh 60.4 kg on Uranus, if you weighed 68 kg on Earth.

Neptune, the last planet in our Solar System, is a gas giant. If you weighed 68 kg on Earth, then you would weigh 76.5 kg on Neptune if you could stand on the planet’s surface.

Although the Moon is not a planet, it is one of the few objects that astronauts have actually visited. Because the Moon is so small, it has a low density and low gravity. If you weighed 68 kg on Earth, then you would only weigh 11.2 kg on the Moon.

Universe Today has a number of articles to check out including weight on the moon and mass of the planets.

If you are looking for more information then determine your weight on other planets and facts about the planets.

Astronomy Cast has an episode on gravity.

New Map Hints at Venus’ Wet, Volcanic Past

[/caption]
Venus is often referred to as Earth’s twin, as the two planets share a similar size. But perhaps the similarities don’t end there. A new infrared map from Venus Express hints that our neighboring world may once have been more Earth-like, with a plate tectonics system and an ocean of water. While previous radar images have given us a glimpse of Venus’ cloud-shrouded surface, this is the first map that hints at the chemical composition of the rocks. The new data are consistent with suspicions that the highland plateaus of Venus are ancient continents, once surrounded by ocean and produced by past volcanic activity.

“This is not proof, but it is consistent. All we can really say at the moment is that the plateau rocks look different from elsewhere,” says Nils Müller at the Joint Planetary Interior Physics Research Group of the University Münster and DLR Berlin, who headed the mapping efforts.

The first temperature map of the planet's southern hemisphere at infrared wavelengths, charted with Venus Express's Visible and Infrared Thermal Imaging Spectrometer, VIRTIS. Credits: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA
The first temperature map of the planet's southern hemisphere at infrared wavelengths, charted with Venus Express's Visible and Infrared Thermal Imaging Spectrometer, VIRTIS. Credits: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA

The map shows Venus’ southern hemisphere comprised over a thousand individual images, recorded between May 2006 and December 2007. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument captured infrared radiation given off by the various surfaces on Venus during the spacecraft’s night-time orbits around the planet’s southern hemisphere.

Different types of rocks radiate different amounts of heat at infrared wavelengths owing to a material characteristic known as emissivity. The new map shows that the rocks on the Phoebe and Alpha Regio plateaus are lighter in color and look old compared to the majority of the planet. On Earth, such light-colored rocks are usually granite and form continents.

“If there is granite on Venus, there must have been an ocean and plate tectonics in the past,” says Müller.
Granite is formed when ancient rocks, made of basalt, are driven down into the planet by shifting continents, a process known as plate tectonics. The water combines with the basalt to form granite and the mixture is reborn through volcanic eruptions.

Müller points out that the only way to know for sure whether the highland plateaus are continents is to send a lander there. Over time, Venus’ water has been lost to space, but there might still be volcanic activity. The infrared observations are very sensitive to temperature. But in all images they saw variations of only 3–20°C, instead of the kind of temperature difference they would expect from active lava flows.

“Venus is a big planet, being heated by radioactive elements in its interior. It should have as much volcanic activity as Earth,” he says. Indeed, some areas do appear to be composed of darker rock, which hints at relatively recent volcanic flows.

Lead image caption: Artistic interpretation of a possible volcano on Venus. Credits: ESA – AOES Medialab

Source: ESA

Discovery of the Planets

[/caption]
We actually only know the exact date of when a few of the planets were discovered. Five of the planets, not including Earth, have been known to exist for thousands of years  – Mercury, Mars, Venus, Jupiter, and Saturn. The Ancient Greeks and Romans wrote about the planets many centuries ago. Because the planets look like stars to the naked eye, that is where the term planets comes from. Because the planets move in the sky, they were termed wandering stars. The term planet comes from the Greek word for wanderer, “planetes.” Many ancient people thought that the planets were gods, so they gave them the names of their gods. All of the planets, except Earth have names of Roman deities.

The other three planets – Uranus, Neptune, and Pluto – were not discovered until at least the 1700’s. Pluto is no longer a planet since it was reclassified as a dwarf planet in 2006. It was known as the ninth planet for 70 years though, so its discovery will be included here. Uranus was discovered in 1781 by the famous astronomer Sir William Herschel, although that was not the first sighting of it. The planet had been sighted as early as 1690 by the English astronomer John Flamsteed. It was also sighted by Pierre Lemonier in the mid 1700’s. Sir Herschel at first thought that Uranus was a comet, but he noticed the irregularities early on and compared it to a planet in his notes.

Because Neptune cannot be seen without the help of a telescope, it was not discovered until after 1610, when Galileo created the telescope. Alexis Bouvard, a mathematician, saw that another planet had to be affecting Uranus’ orbit, so astronomers started looking for it. Two astronomers, John Couch Adams and Urbain Le Verrier, discovered Neptune independently or rather made the calculations and determined where Neptune could be found. The planet turned out to be 1° from Verrier’s calculations and 12° from Adams’. There was a dispute between France and England over who discovered the new planet because Adams and Verrier are from England and France respectively.

Pluto was the last planet discovered, although that distinction returned to Neptune when Pluto was reclassified as a dwarf planet. Pluto was discovered in 1930 by the astronomer Clyde Tombaugh. Many people had been searching for a ninth planet – the elusive planet X – for quite a while. Since Pluto was discovered near the calculated location of planet X, they thought the two planets were one and the same. Later, astronomers realized that there was no such planet X.

Universe Today has a number of articles on the planets including who discovered Neptune and the planets of our Solar System.

Check out these other articles including mathematical discovery of the planets and the planets.

Astronomy Cast has episodes on all of the planets including Mercury.

Names of the Planets

[/caption]

You may recognize the names of the planets from your high school literature course or a history class. That is because many of the planets were first discovered by ancient civilizations, and so planets are named after their gods.

The Romans named Mercury after the messenger of the gods because it appears to move so quickly.

Venus was named after the Roman goddess of love because of its shining presence. The planet is the brightest object in the sky beside the Moon and the Sun. A number of other cultures also named Venus after their own gods or goddesses of love and war.

Earth is the only planet not named after a god. The name is based on Germanic and Old English words for “ground.”

Mars was named after the Roman god of war because of its red color, which reminded people of blood. Other civilizations also had names for the planet based on its color. The Egyptians called it “Her Desher,” which means “the red one.”

Jupiter was named after the king of the gods – Zeus by the Greeks and Jupiter by the Romans. Ancient civilizations most likely named this planet after the most powerful god because of its size. Jupiter is the largest and most massive planet in our Solar System.

Saturn was named after the father of the king of gods as well as being the god of agriculture and harvest. In mythology, Saturn had taken the position of king of the gods from his own father, Uranus, and then Jupiter overthrew him. Saturn is the last planet that can be seen from Earth without the aid of a telescope.

Uranus was not discovered until 1781 by Sir William Herschel, so it was not necessarily going to be named after a Roman god. In fact, Herschel named the planet “Georgium Sidus” in honor of George III who was King of England at the time. Others called the planet Herschel in honor of the astronomer who had discovered it. The name Uranus, which is the name of the Roman god who is the father of Jupiter, was suggested by the astronomer Johann Bode. That name was widely accepted in the mid 1800’s, and it fit in with the other planets, which all had names from mythology.

Neptune had been observed by a number of astronomers, but they believed it was a star. Two people, John Couch Adams and Urban Le Verrier, calculated the planet’s location. Johann Galle, the astronomer who discovered the planet using Verrier’s calculations, wanted to name the planet after Verrier. Many astronomers objected though, so it was named after Neptune the Roman god of the sea. The name was very fitting because the planet is a bright sea blue.

Universe Today has a number of articles on the planets including facts about the planets and the planets of the solar system.

If you are looking for more information on the planets take a look at the planets and interesting facts about the planets.

Astronomy Cast has episodes on all of the planets, so start with Mercury.

The Brightest Planet

[/caption]
When you look up into the sky, if you are lucky, you see shining stars on a field of blue-black. Not all of these objects are stars though. Venus, which can be seen with the unaided eye from Earth, is the brightest planet in our Solar System. Venus was given the nickname evening star and morning star because of its bright, consistent presence. It is often called Earth’s twin because it is similar in shape and size to our own planet. The only objects brighter than Venus are the Moon and the Sun. Sirius, the brightest star that can be seen in the sky, is much dimmer than Venus is. People have known that Venus existed for centuries. The planet was named after the Roman goddess of love and this shining planet has long been associated with femininity.

A planet’s brightness is determined by how much light is reflected by the planet. The term albedo refers to the balance between how much light is absorbed and how much light is reflected by the planet. As the brightest planet, Venus has a very high albedo. Seventy percent of the light that hits Venus is reflected back into space. Why does Venus have such a high albedo though? There are droplets of sulfuric acid and acidic crystals in the atmosphere of Venus. The smooth surfaces of these droplets of sulfuric acid and crystals reflect light very well, which is one reason why Venus is so bright. There is a lot more to this planet than its shimmering appearance though.

The same atmosphere that causes Venus to shine like a beacon also prevents us from getting a look at the planet’s surface. Astronomers did not know what the planet looked like until probes checked out the surface in the last few decades. Because the surface of Venus could not be seen, scientists and writers imagined that it was a tropical, lush landscape. That was not the case though. In addition to hiding the surface and reflecting light, Venus’ atmosphere traps heat from the Sun, turning the planet into a raging furnace. Reaching temperatures of over 460°C, Venus is the hottest planet in the Solar System. Its landscape is similar to that of Mercury and the Moon – rocky, barren terrain with no sign of life. Venus has long enchanted viewers with its beauty and shining presence. Try looking for this planet in the sky; you may find yourself captivated by this shining beauty like many before you.

Universe Today has many articles on Venus including the atmosphere of Venus  and how to find Venus in the sky.

For more information check out these articles from NASA on an overview of Venus and from Nine Planets on the brightest planet.

Astronomy Cast has an episode on Venus you should take a look at.

How Far is Venus from Earth?

The are varying numbers for the Venus distance from Earth. Each number depends on the relative position of each planet in its elliptical orbit. The point when the planets are at their closest approach to each other is called opposition. The distance between the planets can even vary at different oppositions. The closest possible opposition distance between Earth and Venus is 38 million kilometers. This is the closest that any planet comes to Earth.

The farthest that Venus ever gets from Earth is 261 million km. The means that the Venus distance from Earth can vary by an incredible 223 million km. While that seems like an amazing distance, it is nothing compared to the numbers attributed to other planets. Try to imagine how far it is between Earth and Neptune. Here is a link that tells you how to figure those distances out.

The relative proximity of Venus helps to explain why it is the second brightest object in the night sky. The planet has an apparent magnitude of about -4.9 at its brightest. It can also completely disappear from the night sky when it is at its most distant, because the Sun is between it and the Earth. The planet’s apparent magnitude is also helped by the reflectivity of the sulfuric acid clouds that dominate its atmosphere. The clouds reflect a great deal of visible light, increasing the planet’s albedo and making it more readily seen.

Venus will periodically pass across the face of the sun. This is called a transit. These transits of Venus occur in pairs with more than a century separating each pair. Since the advent of the telescope, transits have been observed in 1631, 1639; 1761, 1769; and 1874, 1882. the most recent occurred on June 8, 2004. The second in this pair will occur on June 6, 2012, so mark your calenders and prepare your telescopes. The planet can also be seen to go through phases much like the Moon when you observe it through powerful binoculars or small telescopes.

Venus is always brighter than any star. It is at its brightest when the Venus distance from Earth is the smallest. The planet can be easy to see when the Sun is low on the horizon, it always lies about 47° from the Sun. The planet orbits faster than the Earth, so overtakes it every 584 days. When this happens Venus is more easily seen in the morning, just after sunrise. Hopefully, you have found quite a bit of useful information here.

We have written many articles about Venus for Universe Today. Here are some interesting facts about Venus, and here’s an article about Venus compared to Earth.

If you’d like more information on Venus, check out Hubblesite’s News Releases about Venus, and here’s a link to NASA’s Solar System Exploration Guide on Venus.

We’ve also recorded an entire episode of Astronomy Cast all about Venus. Listen here, Episode 50: Venus.

References:
http://solarsystem.nasa.gov/planets/profile.cfm?Object=Venus&Display=OverviewLong
http://curious.astro.cornell.edu/question.php?number=564