Hubble Discovers Water Plumes Erupting from Europa

It’s been known since 2005 that Saturn’s 300-mile-wide moon Enceladus has geysers spewing ice and dust out into orbit from deep troughs that rake across its south pole. Now, thanks to the Hubble Space Telescope (after 23 years still going strong) we know of another moon with similar jets: Europa, the ever-enigmatic ice-shelled moon of Jupiter. This makes two places in our Solar System where subsurface oceans could be getting sprayed directly into space — and within easy reach of any passing spacecraft.

(Psst, NASA… hint hint.)

The findings were announced today during the meeting of the American Geophysical Union in San Francisco.

“The discovery that water vapor is ejected near the south pole strengthens Europa’s position as the top candidate for potential habitability,” said lead author Lorenz Roth of the Southwest Research Institute (SwRI) in San Antonio, Texas. “However, we do not know yet if these plumes are connected to subsurface liquid water or not.”

The 125-mile (200-km) -high plumes were discovered with Hubble observations made in December 2012. Hubble’s Space Telescope Imaging Spectrograph (STIS) detected faint ultraviolet light from an aurora at the Europa’s south pole. Europa’s aurora is created as it plows through Jupiter’s intense magnetic field, which causes particles to reach such high speeds that they can split the water molecules in the plume when they hit them. The resulting oxygen and hydrogen ions revealed themselves to Hubble with their specific colors.

Unlike the jets on Enceladus, which contain ice and dust particles, only water has so far been identified in Europa’s plumes. (Source)

Rendering showing the location and size of water vapor plumes coming from Europa's south pole.
Rendering showing the location and size of water vapor plumes coming from Europa’s south pole.

The team suspects that the source of the water is Europa’s long-hypothesized subsurface ocean, which could contain even more water than is found across the entire surface of our planet.

Read more: Europa’s Hidden Great Lakes May Harbor Life

“If those plumes are connected with the subsurface water ocean we are confident exists under Europa’s crust, then this means that future investigations can directly investigate the chemical makeup of Europa’s potentially habitable environment without drilling through layers of ice,” Roth said. “And that is tremendously exciting.”

One other possible source of the water vapor could be surface ice, heated through friction.

Cassini image of ice geysers on Enceladus (NASA/JPL/SSI)
Cassini image of ice geysers on Enceladus (NASA/JPL/SSI)

In addition the Hubble team found that the intensity of Europa’s plumes, like those of Enceladus, varies with the moon’s orbital position around Jupiter. Active jets have been seen only when Europa is farthest from Jupiter. But the researchers could not detect any sign of venting when Europa is closer.

One explanation for the variability is Europa undergoes more tidal flexing as gravitational forces push and pull on the moon, opening vents at larger distances from Jupiter. The vents get narrowed or even seal off entirely when the moon is closest to Jupiter.

Still, the observation of these plumes — as well as their varying intensity — only serves to further support the existence of Europa’s ocean.

“The apparent plume variability supports a key prediction that Europa should tidally flex by a significant amount if it has a subsurface ocean,” said Kurt Retherford, also of SwRI.

(Science buzzkill alert: although exciting, further observations will be needed to confirm these findings. “This is a 4 sigma detection, so a small uncertainly that the signal is just noise in the instruments,” noted Roth.)

“If confirmed, this new observation once again shows the power of the Hubble Space Telescope to explore and opens a new chapter in our search for potentially habitable environments in our solar system.”

– John Grunsfeld, NASA’s Associate Administrator for Science

Read more: Hydrogen Peroxide Could Feed Life on Europa

So. Who’s up for a mission to Europa now? (And unfortunately in this case, Juno doesn’t count.)

“Juno is a spinning spacecraft that will fly close to Jupiter, and won’t be studying Europa,” Kurt Retherford told Universe Today. “The team is looking hard how we can optimize, maybe looking for gases coming off Europa and look at how the plasma interacts with environment, so we really need a dedicated Europa mission.”

We couldn’t agree more.

The findings were published in the Dec. 12 online issue of Science Express.

Sources: Hubble news releases (US and ESA)

Image credits:
Graphic Credit: NASA, ESA, and L. Roth (Southwest Research Institute and University of Cologne, Germany)
Science Credit: NASA, ESA, L. Roth (Southwest Research Institute and University of Cologne, Germany), J. Saur (University of Cologne, Germany), K. Retherford (Southwest Research Institute), D. Strobel and P. Feldman (Johns Hopkins University), M. McGrath (Marshall Space Flight Center), and F. Nimmo (University of California, Santa Cruz)

Plastic Protection Against Cosmic Rays?

It could work, say researchers from the University of New Hampshire and the Southwest Research Institute.

One of the inherent dangers of space travel and long-term exploration missions beyond Earth is the constant barrage of radiation, both from our own Sun and in the form of high-energy particles originating from outside the Solar System called cosmic rays. Extended exposure can result in cellular damage and increased risks of cancer at the very least, and in large doses could even result in death. If we want human astronauts to set up permanent outposts on the Moon, explore the dunes and canyons of Mars, or mine asteroids for their valuable resources, we will first need to develop adequate (and reasonably economical) protection from dangerous space radiation… or else such endeavors will be nothing more than glorified suicide missions.

While layers of rock, soil, or water could protect against cosmic rays, we haven’t yet developed the technology to hollow out asteroids for spaceships or build stone spacesuits (and sending large amounts of such heavy materials into space isn’t yet cost-effective.)  Luckily, there may be a much easier way to protect astronauts from cosmic rays — using lightweight plastics.

While aluminum has always been the primary material in spacecraft construction, it provides relatively little protection against high-energy cosmic rays and can add so much mass to spacecraft that they become cost-prohibitive to launch.

Using observations made by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) orbiting the Moon aboard LRO, researchers from UNH and SwRI have found that plastics, adequately designed, can provide better protection than aluminum or other heavier materials.

“This is the first study using observations from space to confirm what has been thought for some time—that plastics and other lightweight materials are pound-for-pound more effective for shielding against cosmic radiation than aluminum,” said Cary Zeitlin of the SwRI Earth, Oceans, and Space Department at UNH. “Shielding can’t entirely solve the radiation exposure problem in deep space, but there are clear differences in effectiveness of different materials.”

Zeitlin is lead author of a paper published online in the American Geophysical Union journal Space Weather.

A block of tissue-equivalent plastic (Credit: UNH)
A block of tissue-equivalent plastic (TEP) Credit: UNH

The plastic-aluminum comparison was made in earlier ground-based tests using beams of heavy particles to simulate cosmic rays. “The shielding effectiveness of the plastic in space is very much in line with what we discovered from the beam experiments, so we’ve gained a lot of confidence in the conclusions we drew from that work,” says Zeitlin. “Anything with high hydrogen content, including water, would work well.”

The space-based results were a product of CRaTER’s ability to accurately gauge the radiation dose of cosmic rays after passing through a material known as “tissue-equivalent plastic,” which simulates human muscle tissue.

(It may not look like human tissue, but it collects energy from cosmic particles in much the same way.)

Prior to CRaTER and recent measurements by the Radiation Assessment Detector (RAD) on the Mars rover Curiosity, the effects of thick shielding on cosmic rays had only been simulated in computer models and in particle accelerators, with little observational data from deep space.

The CRaTER observations have validated the models and the ground-based measurements, meaning that lightweight shielding materials could safely be used for long missions — provided their structural properties can be made adequate to withstand the rigors of spaceflight.

Sources: EurekAlert and [email protected]