How to See the Space Station Fly in Front of the Moon

What strange creature is this flitting across the Moon? Several members of the European Space Agency’s Astronomy Center captured these views of the International Space Station near Madrid, Spain on January 14 as it flew or transited in front of the full moon. Credit: Michel Breitfellner, Manuel Castillo, Abel de Burgos and Miguel Perez Ayucar / ESA

One-one thou… That’s how long it takes for the International Space Station, traveling at over 17,000 mph (27,300 kph), to cross the face of the Full Moon. Only about a half second! To see it with your own eyes, you need to know exactly when and where to look. Full Moon is best, since it’s the biggest the moon can appear, but anything from a half-moon up and up will do.

The photo above was made by superimposing 13 separate images of the ISS passing in front of the Moon into one. Once the team knew when the pass would happen, they used a digital camera to fire a burst of exposures, capturing multiple moments of the silhouetted spacecraft.


The ISS transits the Full Moon in May 2016

The ISS is the largest structure in orbit, spanning the size of a football field, but at 250 miles (400 km) altitude, it only appears as big as a modest lunar crater. While taking a photo sequence demands careful planning, seeing a pass is bit easier. As you’d suspect, the chances of the space station lining up exactly with a small target like the Moon from any particular location is small. But the ISS Transit Finder makes the job simple.

This is a screen grab from the homepage of Bartosz Wojczy?ski’s most useful ISS Transit Finder. Credit: Bartosz Wojczy?ski

Click on the link and fill in your local latitude, longitude and altitude or select from the Google maps link shown. You can always find your precise latitude and longitude at NASA’s Latitude/Longitude Finder  and altitude at Google Maps Find Altitude. Next, set the time span of your Moon transit search (up to one month from the current date) and then how far you’re willing to drive to see the ISS fly in front of the Moon.

When you click Calculate, you’ll get a list of events with little diagrams showing where the ISS will pass in relation to the Moon and sun (yes, the calculator also does solar disk crossings!) from your location. Notice that most of the passes will be near misses. However, if you click on the Show on Map link, you’ll get a ground track of exactly where you will need to travel to see it squarely cross Moon or Sun. Times shown are your local time, not Universal or UT.

A beautiful ISS transit on June 19 2015 recorded at Biscarrosse, France. The photographer used CalSky, another excellent satellite site, to prepare a week in advance of the event. This composite image was made with a Canon EOS 60D. Notice how bright the space station appears against the moon due to the lower-angled lighting across the lunar landscape at crescent phase compared to full, when the ISS appears in silhouette. Credit: David Duarte

The map also includes Recalculate for this location link. Clicking that will show you a sketch of the ISS’ predicted path across the Moon from the centerline location along with other details. I checked my city, and while there are no lunar transits for the next month, there’s a very nice solar one visible just a few miles from my home on Feb. 8. Remember to use a safe solar filter if you plan on viewing one of these!

The ISS transits the Sun on May 3, 2016. Click for details on how the photo was taken. Credit: Szabolcs Nagy

While you might attempt to see a transit of the ISS in binoculars, your best bet is with a telescope. Nothing fancy required, just about any size will do so long as it magnifies at least 30x to 40x. Timing is crucial. Like an occultation, when the moon hides a background star in an instant, you want to be on time and 100% present.

Make sure you’re set up and focused on the moon or sun (with filter) at least 5 minutes beforehand. Keep your cellphone handy. I’ve found the time displayed at least on my phone to be accurate. One minute before the anticipated transit, glue your eye to the eyepiece, relax and wait for the flyby. Expect something like a bird in silhouette to make a swift dash across the moon’s face. The video above will help you anticipate what to expect.

The next lunar transit nearest my home is an hour and a half away in the small town of Biwabik, Minn. according to the ISS Transit Finder. On Jan. 30 at 8:00:08 p.m local time, the ISS will cross the crescent moon from there. Once you know the time of the prediction and the exact latitude and longitude of the location (all information shown in the info box on the map using the ISS Transit Finder), you can turn on the satellites feature in the free Stellarium program (stellarium.org), select the ISS and create a simulated, detailed path. Created with Stellarium

Even if you never go to the trouble of identifying a “direct hit”, you can still use the transit finder to compile a list of cool lunar close approaches that would make for great photos with just a camera and tripod.

The Transit Finder isn’t the only way to predict ISS flybys. Some observers also use the excellent satellite site, CalSky. Once you tell it your location, select the Lunar/Solar Disk Crossings and Occultations link for lots of information including times, diagrams of crossings, ground tracks and more.

I use Stellarium (above) to make nifty simulated paths and show me where the Moon will be in the sky at the time of the transit. When you’ve downloaded the free program, get the latest satellite orbital elements this way:

* Move you cursor to the lower left of the window and select the Configuration box
* Click the Plugins tab and scroll down to Satellites and click Configure and then Update
Hover the cursor at the bottom of the screen for a visual menu. Slide over to the satellite icon and click it once for Satellite hints. The ISS will now be active.
* Set the clock and location (lower left again) for the precise time and location, then do a search for the Moon, and you’ll see the ISS path.

There you have it — lots of options. Or you can simply use the Transit Finder and call it a day! I hope you’ll soon be in the right place at the right time to see the space station pass in front of the Moon. Checking my usual haunts, I see that the space station will be returning next weekend (Jan. 27) to begin an approximately 3-week run of easily viewable evening passes.

See Venus at Her Most Ravishing

Venus is HUGE right now but oh-so-skinny as it approaches inferior conjunction on August 15. Like crescents? You’ll never see a thinner and more elegant one, but first you’ll have to find it. Here’s how.

On August 9th, Venus is only 6 days before inferior conjunction when it passes between the Earth and Sun. Shortly before, during and after conjunction, Venus will appear as a wire-thin crescent. Venus will continue moving west of the Sun and rise higher in the morning sky after mid-August with greatest elongation west occuring on October 26. Wikipedia with additions by the author
On August 9th, Venus is only 6 days before inferior conjunction when it passes between the Earth and Sun. Shortly before, during and after conjunction, Venus will appear as a wire-thin crescent. The planet will continue moving west of the Sun and rise higher in the morning sky after mid-August with greatest elongation west occurring on October 26, when its phase will fatten to half.
Wikipedia with additions by the author

There’s only one drawback to enjoying Venus at its radically thinnest — it’s very close to the Sun and visible only during the daytime. A look at the diagram above reveals that as Venus and Earth draw closer, the planet also aligns with the Sun. At conjunction on August 15, it will pass 7.9° south of our star, appearing as an impossibly thin crescent in the solar glare. The sight is unique, a curved strand of incandescent wire burning in the blue.

Venus at inferior conjunction on January 10, 2014 shows both the sunlit crescent and cusp extensions from sunlight penetrating the atmosphere from behind. Credit: Tudorica Alexandru
Venus at inferior conjunction on January 10, 2014 shows both the sunlit crescent and cusp extensions caused by sunlight penetrating the atmosphere from behind. During this previous inferior conjunction, Venus passed north of the Sun, so we see the bottom of the crescent illuminated. Credit: Tudorica Alexandru

If you’re patient and the air is steady, you might even glimpse the cusps of the illuminated crescent extending beyond their normal length to partially or even completely encircle Venus’s disk. These thread-like extensions become visible when the planet lies almost directly between us and the Sun. Sunlight scatters off the Venus’s dense atmosphere, causing it to glow faintly along the limb. One of the most remarkable sights in the sky, the sight is testament to the thickness of the planet’s airy envelope.

Going, going, gone! Or almost. Venus photographed in its beautiful crescent phase on two occasions this past week.
Going, going, gone! Venus photographed in its beautiful crescent phase on two occasions last week. When the planet reaches inferior conjunction this Saturday (August 15),  the crescent will expand to nearly 1 arc minute across. No planet comes closer to Earth than Venus — just 27 million miles this week. Credit: Giorgio Rizzarelli

Today, only 1.7% of the planet is illuminated by the Sun, which shines some 11° to the northwest. The Venusian crescent spans 57 arc seconds from tip to tip, very close to 1 arc minute or 1/30 the width of the Full Moon. Come conjunction day August 15, those numbers will be 0.9% and 58 arc seconds. The angular resolution of the human eye is 1 minute, implying that the planet’s shape might be within grasp of someone with excellent eyesight under a clear, clean, cloudless sky. However — and this is a big however — a bright sky and nearby Sun make this practically impossible.

No worries though. Even 7x binoculars will nail it; the trick is finding Venus in the first place. For binocular users,  hiding the Sun COMPLETELY behind a building, chimney, power pole or tree is essential. The goddess lurks dangerously close to our blindingly-bright star, so you must take every precaution to protect your eyes. Never allow direct sunlight into your glass. Never look directly at the Sun – even for a second – with your eyes or UV and infrared light will sear your retinas. You can use the map provided, which shows several locations of the planet at 1 p.m. CDT when it’s highest in the sky, to help you spot it.

The Sun's position is shown for 1 p.m. local daylight time, while Venus is shown for three dates - today, conjunction date and Aug. 21. As Venus moves from left to right under or south of the Sun, its phase swings from evening crescent (left) to morning crescent from our perspective on Earth. Source: Stellarium with additions by the author
The Sun’s position is shown for 1 p.m. local daylight time facing due south, while Venus and its corresponding phase is depicted before, at and after conjunction. As Venus moves from left to right south of the Sun, its phase changes from evening crescent (left) to morning crescent from our perspective on Earth. Source: Stellarium with additions by the author

If you’d like to see Venus on a different day or time, download a free sky-charting program like Stellarium or Cartes du Ciel. With Stellarium, open the Sky and Viewing Options menu (F4) and click the Light Pollution Level option down to “1” to show Venus in a daytime sky. Pick a viewing time, note Venus’s orientation with respect to the Sun (which you’ve hidden of course!) and look at that spot in the sky with binoculars. I’ll admit, it’s a challenging observation requiring haze-free skies, but be persistent.

By coincidence, the Moon and Venus will be about the same distance from the Sun and appear as exceedingly thin crescents on the afternoon (CDT) of August 13. Source: Stellarium
By coincidence, the Moon and Venus will be about the same distance from the Sun and appear as very similar thin crescents around 1 p.m. CDT on August 13.  Venus should still be visible using the methods described below, but the Moon will be impossible to see. Source: Stellarium

A safer and more sure-fire way to track the planet down involves using those setting circles on your telescope mount most of us never bother with. First, find the celestial coordinates (right ascension and declination) of the Sun and Venus for the time you’d like to view. For example, let’s say we want to find Venus on August 10 at 2 p.m. Using your free software, you click on the Sun and Venus’s positions for that time of day to get their coordinates, in this case:

Venus – Right ascension 9h 42 minutes, declination +6°.
Sun – RA 9h 22 minutes, dec. +15° 30 minutes

Now subtract the two to get Venus’ offset from the Sun = 20 minutes east, 9.5° south.

Dust off those setting circles (declination shown here) and use them to point you to Venus this week. Credit: Bob King
Dust off those setting circles (declination shown here, marked off in degrees) and use them to point you to Venus this week. Credit: Bob King

Next, polar align your telescope using a compass and then cover the objective end with a safe mylar or glass solar filter. Center and sharply focus the Sun in the telescope. Now, loosen the RA lock and carefully offset the right ascension 20 minutes east using your setting circle, then re-lock. Do the same with declination, pointing the telescope 9.5° south of the Sun. If you’re polar alignment is reasonably good, when you remove the solar filter and look through the eyepiece, you should see Venus staring back at you from a blue sky. If you see nothing at first, nudge it a little this way and that to bring the planet into view.

Sometimes it takes me a couple tries, but I eventually stumble arrive on target. Obviously, you can also use this technique to spot Mercury and Jupiter in the daytime, too. By the way, don’t worry what the RA and Dec. read on your setting circles when you begin your hunt; only the offset’s important.

When inferior conjunction occurs at the same time Venus crosses the plane of Earth's orbit, we see a rare transit like this one on June 5, 2012. Credit: Bob King
When inferior conjunction occurs at the same time Venus crosses the plane of Earth’s orbit, we see a rare transit (upper right) like this one on June 5, 2012. Credit: Bob King

This year’s conjunction is one of the best for finding Venus in daylight because it’s relatively far from the Sun. With an orbital inclination of 3.2°, Venus’s position can range up to 8° north and south of the Earth’s orbital plane or ecliptic. Rarely does the planet cross the ecliptic at the same time as inferior conjunction. When it does, we experience a transit of VenusTransits always come in pairs; the last set occurred in 2004 and 2012; the next will happen over 100 years from now in 2117 and 2125.

I hope you’re able to make the most of this opportunity while still respecting your tender retinas. Good luck!