Spitzer Mission Extension Not Approved In NASA Senior Review; Officials Say Budget Rewrite Possible

Artist's impression of the Spitzer Space Telescope. Credit: NASA

“Constrained budget conditions” have prompted NASA to not approve a funding extension for the 11-year-old Spitzer Space Telescope after fiscal 2015, but Spitzer officials emphasized that doesn’t necessarily mean the mission is terminated.

“To be clear: Spitzer has not been canceled. Funding not yet identified, but NASA has asked us for a revised budget,” the Spitzer Twitter account wrote to several individuals after news broke that the telescope was not approved in agency’s Senior Review, a process to see how well ongoing missions are performing to expectations.

What this means is that the telescope is expected to go with the “baseline” plan to finish operations after the end of fiscal 2014 and terminate the mission by the end of fiscal 2015, a process that was already outlined in the NASA budget request for 2015. But there’s a chance, officials said, that this would not happen.

“The Spitzer project is invited to respond with a request for a budget augmentation to conduct continued operations with reduced operations costs,” read the NASA response to the 2014 senior review.

The bow shock of Zeta Ophiuchi, another runaway star observed by Spitzer (NASA/JPL-Caltech)
The bow shock of Zeta Ophiuchi, another runaway star observed by Spitzer (NASA/JPL-Caltech)

This “will be considered during the FY 2016 budget formulation process,” NASA added. “If the administration proposes additional funding for Spitzer in the FY16 Budget, the project will be able to seamlessly continue operations in FY15, while awaiting final appropriations from the Congress for FY16.”

The mission was being reviewed in association with several other astrophysics missions, such as the Kepler space telescope — an exoplanet-hunting probe that was sidelined by a mechanical issue, but was approved in the same review for a new mission.

Spitzer drew concern in the senior review for its “significant current cost”, which is reportedly the most expensive among the missions being considered this time around. The cost also concerned the reviewers because Spitzer’s “observational capabilities are significantly reduced” since the telescope ran out of coolant in 2009.

That said, the so-called “warm” Spitzer mission — which allows it to view different parts of the infrared despite operating at a higher temperature — did impress reviewers with its ability to measure light, especially since it has been able to conduct wide-field surveys that “will not be approached” until the James Webb Space Telescope goes to orbit in 2018.

The 'Mountains of Creation' in the W5 region near Perseus, taken by the Spitzer Space Telescope. Credit: NASA / JPL-Caltech / CfA
The ‘Mountains of Creation’ in the W5 region near Perseus, taken by the Spitzer Space Telescope. Credit: NASA / JPL-Caltech / CfA

“The cost is particularly difficult in the context of an observatory with greatly reduced capabilities with respect to its prime mission,” the review read. “The mission also did not present substantial plans to reduce operations costs with such reduced capabilities. Given the budget climate, the SRP cannot recommend funding of Spitzer at the levels requested.”

While criticizing the cost, the senior review also noted Spitzer has been doing a lot of “unexpected science” such as looking at the atmosphere of exoplanets and brown dwarfs, and identifying the galaxies that are speeding away from Earth the fastest (also known as “high-redshift galaxies.”)

According to the Jet Propulsion Laboratory, these are some of Spitzer’s other notable finds:

– Seeing light from a planet outside of the solar system, which was not in the design plans;

– Surveying stars in formation in clouds that are relatively close to Earth;

– Creating a better map of the Milky Way’s spiral arms.

NASA also regularly does image releases with wavelengths from all three of its “Great Observatories”: Spitzer, the Hubble Space Telescope and the Chandra X-Ray Observatory. Funding extension for both Chandra and Hubble were approved in the review. You can read more about the review at this website.

Three NASA Telescopes Begin Hunt For Earliest Galaxies

A grouping of galaxies, known as J0717 (center) is visible in this Spitzer Space Telescope image. Credit: NASA/JPL-Caltech/P. Capak (Caltech)

Talk about turning back time. Three NASA observatories — the Hubble Space Telescope, the Chandra X-Ray Observatory and the Spitzer Space Telescope — are all working together to look for the universe’s first galaxies. The project is called “Frontier Fields” and aims to examine these galaxies through a technique called gravitational lensing, which allows astronomers to peer at more distant objects when massive objects in front bend their light.

“Our overall science goal with the Frontier Fields is to understand how the first galaxies in the universe assembled,” stated Peter Capak, a research scientist with the NASA/JPL Spitzer Science Center at the California Institute of Technology and the Spitzer lead for the Frontier Fields.

“This pursuit is made possible by how massive galaxy clusters warp space around them, kind of like when you look through the bottom of a wine glass.”

Using the three observatories allows investigators to peer at the galaxies in different light wavelengths (namely, infrared for Spitzer, shorter infrared and optical for Hubble, and X-rays for Chandra). The teams also plan to learn more about how the foreground clusters influence the “warping” of the galaxies behind.

The Hubble and Spitzer telescopes are designed to locate where the galaxies are (and if they are indeed early galaxies) while Chandra can map out the X-ray emissions to better determine the galaxies’ masses. An early example of this project at work was examination of Abell 2744, which yielded a distant find: Abell2744 Y1, one of the earliest known galaxies, which was born about 650 million years after the Big Bang.

Source: California Institute Of Technology

Found! Distant Galaxy Spotted Just 650 Million Years After Big Bang

Hubble Space Telescope deep image of galaxy cluster Abell 2744. Credit: NASA, ESA, J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI), and N. Laporte (Instituto de Astrofisica de Canarias)

Peering deep into the universe with the Hubble Space Telescope, a team of researchers have found an extremely distant galaxy. It was discovered in Abell 2744, a galaxy cluster. The galaxy (called Abell2744_Y1) was spotted at a time when it was just 650 million years after the universe-forming Big Bang (which makes it more than 13 billion years old).

This demonstrates the potential of a relatively new project, researchers said, called “Hubble Frontier Fields.” It’s part of an effort where Hubble and fellow NASA space telescopes Spitzer and the Chandra X-ray Observatory will examine six galaxy clusters that bend the light from more distant objects in the background. By doing this, researchers hope to learn more about galaxies formed in the universe’s first billion years.

“We expected to find very distant galaxies close to the cluster core, where the light amplification is maximum. However, this galaxy is very close to the edge of the Hubble image where the light is not strongly amplified,” stated Nicolas Laporte, a post-doctoral researcher at the Institute of Astrophysics of the Canary Islands (Instituto de Astrofisica de Canarias) who led the study.

“We are really lucky that we could find it in the small field of view of Hubble. In a related study led by Hakim Atek … more galaxies are analyzed but none is more distant than Abell2744_Y1.”

You can read the study in the journal Astronomy and Astrophysics Letters or in preprint version on Arxiv.

Source: Space Telescope Science Institute and Institute of Astrophysics of the Canary Islands

Greedy Galaxies Gobbled Gas, Stalling Star Formation Billions Of Years Ago

Arp 147 contains a spiral galaxy (right) that collided with an elliptical galaxy (left), triggering a wave of star formation. Credit: X-ray: NASA/CXC/MIT/S.Rappaport et al, Optical: NASA/STScI

Like millionaires that burn through their cash too quickly, astronomers have found one factor behind why compact elliptical galaxies stopped growing stars about 11 billion years ago: they ate through their gas reserves.

The revelation comes as researchers released a new evolutionary track for compact elliptical galaxies that stopped their star formation when the universe was just three billion years old. When these galaxies ran out of gas, some of them cannibalized smaller galaxies to create giant elliptical galaxies. The “burned-out”galaxies have stars crowding 10 to 100 times more densely than elliptical galaxies formed more recently through a different evolutionary track.

“We at last show how these compact galaxies can form, how it happened, and when it happened. This basically is the missing piece in the understanding of how the most massive galaxies formed, and how they evolved into the giant ellipticals of today,” stated Sune Toft, who led the study and is a researcher at the Dark Cosmology Center at the Niels Bohr Institute in Copenhagen.

“This had been a great mystery for many years, because just three billion years after the Big Bang we see that half of the most massive galaxies have already completed their star formation.”

How massive elliptical galaxies evolved in about 13 billion years. Credit: NASA, ESA, S. Toft (Niels Bohr Institute), and A. Feild (STScI)
How massive elliptical galaxies evolved in about 13 billion years. Credit: NASA, ESA, S. Toft (Niels Bohr Institute), and A. Feild (STScI)

The team got a snapshot of these galaxies’ evolution by looking at a representative sample with the Hubble Space Telescope, specifically through the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) and a spectroscopic survey called 3D-HST. To find out how old the stars were, they combined the Hubble work with data gathered from the  Spitzer Space Telescope and the Subaru Telescope in Hawaii.

Next, they examined ancient, fast-star-forming submillimeter galaxies with data gathered from a range of space and ground-based telescopes.

The Hubble Space Telescope. image credit: NASA, tweaked by D. Majaess.
The Hubble Space Telescope. image credit: NASA, tweaked by D. Majaess.

“This multi-spectral information, stretching from optical light through submillimeter wavelengths, yielded a full suite of information about the sizes, stellar masses, star-formation rates, dust content, and precise distances of the dust-enshrouded galaxies that were present early in the universe,” Hubble’s news center stated.

The group found that that the submillimeter galaxies were likely “progenitors” of compact elliptical galaxies, as they share predicted characteristics of the ancestors. Further, researchers calculated that starbursts in submillimeter galaxies only went on for about 40 million years before the galaxies ran out of gas.

You can read the results in the Feb. 20 edition of the Astrophysical Journal or in prepublished version in Arxiv.

Source: Hubble News Center

Space Telescopes Look Back 13.2 Billion Years and See Surprisingly Luminous Galaxies

NASA's Hubble Space Telescope and Spitzer Space Telescope joined forces to discover and characterize four unusually bright galaxies as they appeared more than 13 billion years ago, just 500 million years after the big bang. Credit: NASA, ESA, G. Illingworth (University of California, Santa Cruz), P. Oesch (University of California, Santa Cruz; Yale University), R. Bouwens and I. Labbé (Leiden University), and the Science Team.

What was the Universe like more than 13 billion years ago, just 500 million years after the big bang? New data from the Hubble and Spitzer space telescopes reveal some surprisingly bright galaxies that are about 10 to 20 times more luminous than anything seen previously in that epoch.

Garth Illingworth from the University of California, Santa Cruz said the discovery of these four bright galaxies came from combining the power of both telescopes, but these galaxies lie right at the limit of the telescopes’ capabilities.

“We’re actually reaching back 13.2 billion years through the life of the Universe — that’s 96% of the life of the Universe that we are looking back at these galaxies,” said Illingworth, speaking at the American Astronomical Society meeting in Washington D.C. this week. “That’s an astonishing undertaking and an astonishing accomplishment that Hubble and Spitzer have achieved.”

Detail of the Hubble and Spitzer observations of a galaxy from the early Universe. Credit: NASA, ESA, G. Illingworth (University of California, Santa Cruz), P. Oesch (University of California, Santa Cruz; Yale University), R. Bouwens and I. Labbé (Leiden University), and the Science Team.
Detail of the Hubble and Spitzer observations of a galaxy from the early Universe. Credit: NASA, ESA, G. Illingworth (University of California, Santa Cruz), P. Oesch (University of California, Santa Cruz; Yale University), R. Bouwens and I. Labbé (Leiden University), and the Science Team.

Illingworth said the typical galaxy candidate from that far back in time is very faint and hard to see. But these new galaxies are about 15-20 % brighter than what astronomers have seen before at redshift 10.

The tiny are bright because they are bursting with star formation activity. The brightest one is forming stars approximately 50 times faster than the Milky Way does today. Although these fledgling galaxies are only one-twentieth the size of the Milky Way, they probably contain around a billion stars crammed together.

Astronomers think these bright, young galaxies grew exceptionally fast because of interactions and mergers of smaller infant galaxies that started forming stars even earlier in the Universe. Since the ancient time billions of years ago when the light that we now see started its long journey to us, they have probably kept growing to become similar to the largest modern galaxies. Many of the stars of these infant galaxies likely live on today in the centers of giant elliptical galaxies, much larger even than our own Milky Way.

Slide from Garth Illingworth's presentation at the 223rd American Astronomical Society meeting, describing the discovery of bright galaxies from early in the Universe. Credit: Garth Illingworth.
Slide from Garth Illingworth’s presentation at the 223rd American Astronomical Society meeting, describing the discovery of bright galaxies from early in the Universe. Credit: Garth Illingworth.

Illingworth said this era appears to be a timeframe where things were changing quite rapidly. “We’ve gone back to a very interesting time when the Universe is changing,” he said.

The galaxies were first detected with Hubble, and astronomers were able to measure their star-formation rates and sizes. But using Spitzer, the scientists were also able to measure the galaxies’ masses.

“This is the first-ever measurement of the mass density of the galaxies when the Universe was at 500 million years of age,” Illingworth said. “These galaxies are about a billion times the mass of our Sun, which is massive for those times, but still only 1% the mass of the Milky Way.”

Illingworth added that the mass measurements are rough estimates because of how challenging the task was.

Illingworth and team member Ivo Labbé from Leiden University said they are looking forward to finding out more about these galaxies, particularly from future observations with the upcoming James Webb Space Telescope.

“At the same time, the extreme masses and star formation rates are really mysterious,” Labbé said, “and we are eager to confirm them with future observations on our powerful telescopes.”

You can find out more about these early galaxies — and more — at the First Galaxies website.

Further reading: HubbleSite

Supersonic Starbirth Bubble Glows In Image From Two Telescopes

Stellar birth is visible in this image of HH 46/47 taken with the Spitzer Space Telescope and Atacama Large Millimeter/submillimeter Array (ALMA). Credit: NASA/JPL-Caltech/ALMA

Talk about birth in the fast lane. Fresh observations of HH 46/47 — an area well-known for hosting a baby star — demonstrate material from the star pushing against the surrounding gas at supersonic speeds.

“HH” stands for Herbig-Haro, a type of object created “when jets shot out by newborn stars collide with surrounding material, producing small, bright, nebulous regions,” NASA stated. It’s a little hard to see what’s inside these regions, however, as they’re clouded by debris (specifically, gas and dust).

The Spitzer space telescope (which looks in infrared) and the massive Chilean Atacama Large Millimeter/submillimeter Array (ALMA) are both designed to look through the stuff to see what’s within. Here’s what they’ve spotted:

– ALMA: The telescope is showing that the gas is moving apart faster than ever believed, which could have echoes on how the star cloud is forming generally. “In turn, the extra turbulence could have an impact on whether and how other stars might form in this gaseous, dusty, and thus fertile, ground for star-making,” NASA added.

Another view of HH 46/47 with the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/H. Arce. Acknowledgements to Bo Reipurth
Another view of HH 46/47 with the Atacama Large Millimeter/submillimeter Array (ALMA). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/H. Arce. Acknowledgements to Bo Reipurth

– Spitzer: Two supersonic blobs are emerging from the star in the middle and pushing against the gas, creating the big bubbles you can see here. The right-aiming blob has a lot more material to push through than the left one, “offering a handy compare-and-contrast setup for how the outflows from a developing star interact with their surroundings,” NASA stated.

“Young stars like our sun need to remove some of the gas collapsing in on them to become stable, and HH 46/47 is an excellent laboratory for studying this outflow process,” stated Alberto Noriega-Crespo, a scientist at the Infrared Processing and Analysis Center at the California Institute of Technology.

“Thanks to Spitzer, the HH 46/47 outflow is considered one of the best examples of a jet being present with an expanding bubble-like structure.”

The ALMA observations of HH 46/47 were first revealed in detail this summer, in an Astrophysical Journal publication.

Source: NASA

Weekly Space Hangout – September 27, 2013: Buran, Comet ISON, Water on Mars

Is it Friday already? Then it’s time for another Weekly Space Hangout. Join a team of dedicated space journalists to discuss the big space and astronomy news stories that broke this week. This time around, we discussed Amy Shira Teitel’s Buran article, ISON Watch 2013, and the re-re-discovery of water on Mars.

Host: Fraser Cain

Journalists: Amy Shira Teitel, David Dickinson, Jason Major, Dr. Nicole Gugliucci, and Scott Lewis.

And here are the stories we covered:

The Life and Death of Buran
Comet ISON Viewing Guide
Water on Mars
Split Personality Pulsar
Asteroid Was Actually Space Junk
Cat’s Paw Nebula in APEX
Spitzer for Exoplanets
Mindblowing Spaceship Chart

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern, 2000 GMT. You can watch from here on Universe Today, or over on Google+ or YouTube.

How Spitzer’s Focus Changed To Strange New Worlds

Artist's concept of NASA's Spitzer Space Telescope surrounded by examples of exoplanets it has looked at. Credit: NASA/JPL-Caltech

After 10 years in space — looking at so many galaxies and stars and other astronomy features — the Spitzer Space Telescope is being deployed for new work: searching for alien worlds.

The telescope is designed to peer in infrared light (see these examples!), the wavelength in which heat is visible. When looking at infrared light from exoplanets, Spitzer can figure out more about their atmospheric conditions. Over time, it can even detect brightness differences as the planet orbits its sun, or measure the temperature by looking at how much the brightness declines when the planet goes behind its star. Neat stuff overall.

“When Spitzer launched back in 2003, the idea that we would use it to study exoplanets was so crazy that no one considered it,” stated Sean Carey of NASA’s Spitzer Science Center, which is at the California Institute of Technology. “But now the exoplanet science work has become a cornerstone of what we do with the telescope.”

Of course, the telescope wasn’t designed to do this. But to paraphrase the movie Apollo 13, NASA was interested in what the telescope could do while it’s in space — especially because the planet-seeking Kepler space telescope has been sidelined by a reaction wheel problem. Redesigning Spitzer, in a sense, took three steps.

Classifying Galaxies
An example of Spitzer’s past work: This image from NASA’s Spitzer Space Telescope shows infrared light from the Sunflower galaxy, otherwise known as Messier 63. Spitzer’s view highlights the galaxy’s dusty spiral arms. Image credit: NASA/JPL-Caltech

Fixing the wobble: Spitzer is steady, but not so steady that it could easily pick out the small bit of light that an exoplanet emits. Engineers determined that the telescope actually wobbled regularly and would wobble for an hour. Looking into the problem further, they discovered it’s because a heater turns on to keep the telescope battery’s temperature regulated.

“The heater caused a strut between the star trackers and telescope to flex a bit, making the position of the telescope wobble compared to the stars being tracked,” NASA stated. In October 2010, NASA decided to cut the heating back to 30 minutes because the battery only needs about 50 per cent of the heat previously thought. Half the wobble and more exoplanets was more the recipe they were looking for.

The Spitzer Space Telescope.  Credit:  NASA
The Spitzer Space Telescope. Credit: NASA

Repurposing a camera: Spitzer has a pointing control reference sensor “peak-up” camera on board, which originally gathered up infrared light to funnel to a spectrometer. It also calibrated the telescope’s star-tracker pointing devices. The same principle was applied to infrared camera observations, putting stars in the center of camera pixels and allowing a better view.

Remapping a camera pixel: The scientists charted the variations in a single pixel of the camera that showed them which were the most stable areas for observations. For context, about 90% of Spitzer’s exoplanet observations are about a 1/4 of a pixel wide.

That’s pretty neat stuff considering that Spitzer’s original mission was just 2.5 years, when it had coolant on board to allow three temperature-sensitive science instruments to function. Since then, engineers have set up a passive cooling system that lets one set of infrared cameras keep working.

Source: NASA

Distant Star Goes Disco

Star-forming Region IC 348 Around Protostar LRLL 54361. Credit: Credit: NASA, ESA, J. Muzerolle (STScI), E. Furlan (NOAO and Caltech), K. Flaherty (University of Arizona/Steward Observatory), Z. Balog (Max Planck Institute for Astronomy), and R. Gutermuth (University of Massachusetts, Amherst)

A disco inferno in space? Astronomers have been keeping an eye on an unusual star that unleashes a burst of light every 25 days, like an extremely slow pulsating disco ball. Similar pulsating bursts of light have been seen before, but this one, named LRLL 54361 is the most powerful beacon ever seen.

Using the Spitzer and Hubble space telescopes, astronomers have solved the mystery of this star. It is actually two newly formed protostars in a binary system, doing a little disco dance of their own. And as they spin around each other on the smoky dance floor (actually a dense cloud of gas and dust), a blast of radiation is unleashed each time the stars get close to each other in their orbits. The effect seen by the telescopes is enhanced by an optical illusion called a light echo.

NASA's Spitzer and Hubble space telescopes have teamed up to uncover a mysterious infant star that behaves like a police strobe light. Credit: NASA, ESA, J. Muzerolle (STScI), E. Furlan (NOAO and Caltech), K. Flaherty (University of Arizona/Steward Observatory), Z. Balog (Max Planck Institute for Astronomy), and R. Gutermuth (University of Massachusetts, Amherst).
NASA’s Spitzer and Hubble space telescopes have teamed up to uncover a mysterious infant star that behaves like a police strobe light. Credit: NASA, ESA, J. Muzerolle (STScI), E. Furlan (NOAO and Caltech), K. Flaherty (University of Arizona/Steward Observatory), Z. Balog (Max Planck Institute for Astronomy), and R. Gutermuth (University of Massachusetts, Amherst).

The unusual thing is, while astronomers have seen this phenomenon before, called pulsed accretion, usually it is found in later stages of star birth – and not in such a young system or with such intensity and regularity.
Astronomers say LRLL 54361 offers insights into the early stages of star formation when lots of gas and dust is being rapidly accreted to form a new binary star.

“This protostar has such large brightness variations with a precise period that it is very difficult to explain,” said James Muzerolle of the Space Telescope Science Institute. His paper recently was published in the journal Nature.

Discovered by NASA’s Spitzer Space Telescope, LRLL 54361 is a variable object inside the star-forming region IC 348, located 950 light-years from Earth. Data from Spitzer’s dust-piercing infrared cameras showed unusual outbursts in the brightness, occurring every 25.34 days, which is a very rare phenomenon.

Based on statistical analysis, the two stars are estimated to be no more than a few hundred thousand years old.

Astronomers used the Hubble Space Telescope to confirm the Spitzer observations and reveal the detailed stellar structure around LRLL 54361. Hubble observed two cavities above and below a dusty disk. The cavities are visible by tracing light scattered off their edges. They likely were blown out of the surrounding natal envelope of dust and gas by an outflow launched near the central stars. The disk and the envelope prevent the suspected binary star pair from being observed directly. By capturing multiple images over the course of one pulse event, the Hubble observations uncovered a spectacular movement of light away from the center of the system, the light echo optical illusion, where a sudden flash or burst of light is reflected off a source and arrives at the viewer some time after the initial flash.

A series of images taken by Hubble Space Telescope over  a month show the pulse of light moving through the nebula. The light is illuminating the material around the stars. Credit: NASA, ESA, and Z. Levay (STScI)
A series of images taken by Hubble Space Telescope over a month show the pulse of light moving through the nebula. The light is illuminating the material around the stars. Credit: NASA, ESA, and Z. Levay (STScI)

Muzerolle and his team hypothesized the pair of stars in the center of the dust cloud move around each other in a very eccentric orbit. As the stars approach each other, dust and gas are dragged from the inner edge of a surrounding disk. The material ultimately crashes onto one or both stars, which triggers a flash of light that illuminates the circumstellar dust. The system is rare because close binaries account for only a few percent of our galaxy’s stellar population. This is likely a brief, transitory phase in the birth of a star system.

Muzerolle’s team next plans to continue monitoring LRLL 54361 using other facilities including the European Space Agency’s Herschel Space Telescope. The team hopes to eventually obtain more direct measurements of the binary star and its orbit.

Read Muzerolle’s paper (pdf)

Source: HubbleSite

Combining Light to Reveal Monster Black Holes

NGC 3627 glows in the combined light of Hubble, Chandra, Spitzer and the Very Large Telescope in this image. Astronomers conducted a survey of 62 galaxies, including NGC 3627 to study monster black holes at their centers.

It’s not just pretty, it’s science. Like a starry watercolor, astronomers combining light from Earth and space-based observatories found 37 new supermassive black hole candidates lurking in nearby galaxies.

Included in that survey is NGC 3627 pictured above. Astronomers combined X-ray data from NASA’s Chandra X-ray Observatory, infrared data from the Spitzer Space Telescope, and optical data from the Hubble Space Telescope and the Very Large Telescope. The other images give the galaxy context but it’s the ghostly blue images from Chandra that show super bright in the X-ray images; X-ray light powered by material falling into a monster black hole.

Gas and dust slowly spins around the black hole creating a flattened disk, or accretion disk. As material falls inward, it heats up and releases large amounts of energy that shine brightly in the ultraviolet region of the spectrum.

NGC 3627, located about 30 million light-years from Earth, was just one of a survey of 62 nearby galaxies using archived data from Chandra and data from the Spitzer Infrared Nearby Galaxy Survey. Of those, 37 galaxies contained bright X-ray sources, indicating active black holes at their cores. Scientists believe that seven of those sources are new supermassive black hole candidates.

The paper describing the survey results was published in the April 10, 2011 issue of The Astrophysical Journal.

Combining ultraviolet and infrared observations confirm previous Chandra results that found that there may be many more galaxies powered by monster black holes than believed previously through optical surveys. Scientists say in the paper that low-levels of black hole activity previously may have been hidden by dust or washed out by the bright light of the galaxy.

Image caption: Bright X-ray sources glow a ghostly blue in this image in NGC 3627 from NASA’s Chandra X-ray Observatory. A study confirms previous Chandra results that indicate that more galaxies powered by monster black holes populate the cosmos.

Source: Chandra X-ray Observatory website