Boeing Completes All CST-100 Commercial Crew CCiCAP Milestones on Time and on Budget for NASA – Ahead of Competitors

Boeing unveiled full scale mockup of their commercial CST-100 'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer - kenkremer.com

In the ‘new race to space’ to restore our capability to launch Americans to orbit from American soil with an American-built commercial ‘space taxi’ as rapidly and efficiently as possible, Boeing has moved to the front of the pack with their CST-100 spaceship by completing all their assigned NASA milestones on time and on budget in the current phase of the agency’s Commercial Crew Program (CCP).

Boeing is the first, and thus far only one of the three competitors (including Sierra Nevada Corp. and SpaceX) to complete all their assigned milestone task requirements under NASA’s Commercial Crew Integrated Capability (CCiCap) initiative funded under the auspices of the agency’s Commercial Crew Program.

The CST-100 is a privately built, man rated capsule being developed with funding from NASA via the commercial crew initiative in a public/private partnership between NASA and private industry.

The overriding goal is restart America’s capability to reliably launch our astronauts from US territory to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Private space taxis are the fastest and cheapest way to accomplish that and end the gap in indigenous US human spaceflight launches.

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing announced that NASA approved the completion of the final two commercial crew milestones contracted to Boeing for the CST-100 development.

These last two milestones are the Phase Two Spacecraft Safety Review of its Crew Space Transportation (CST)-100 spacecraft and the Critical Design Review (CDR) of its integrated systems.

The CDR milestone was completed in July and comprised 44 individual CDRs including propulsion, software, avionics, landing, power and docking systems.

The Phase Two Spacecraft Safety Review included an overall hazard analysis of the spacecraft, identifying life-threatening situations and ensuring that the current design mitigated any safety risks, according to Boeing.

“The challenge of a CDR is to ensure all the pieces and sub-systems are working together,” said John Mulholland, Boeing Commercial Crew program manager, in a statement.

“Integration of these systems is key. Now we look forward to bringing the CST-100 to life.”

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Passing the CDR and completing all the NASA milestone requirements is a significant step leading to the final integrated design for the CST-100 space taxi, ground systems and Atlas V launcher that will boost it to Earth orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

The Sierra Nevada Dream Chaser and SpaceX Dragon V2 and are also receiving funds from NASA’s commercial crew program.

All three American aerospace firms vying for the multibillion dollar NASA contract to build an American ‘space taxi’ to ferry US astronauts to the International Space Station and back as soon as 2017.

NASA’s Commercial Crew Program office is expected to announce the winner(s) of the high stakes, multibillion dollar contract to build America’s next crew vehicles in the next program phase, known as Commercial Crew Transportation Capability (CCtCap), “sometime around the end of August/September,” NASA News spokesman Allard Beutel confirmed to me.

“We don’t have a scheduled date for the commercial crew award(s).”

There will be 1 or more CCtCAP winners.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

On June 9, 2014, Boeing revealed the design of their CST-100 astronaut spaceliner by unveiling a full scale mockup of their commercial ‘space taxi’ at the new home of its future manufacturing site at the Kennedy Space Center (KSC) located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for assembly missions to the ISS.

The CST-100 crew transporter was unveiled at the invitation only ceremony and media event held inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.

The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight (STS-135) in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.

“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”

So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

“The first unmanned orbital test flight is planned in January 2017… and may go to the station,” Ferguson told me during our exclusive interview about Boeing’s CST-100 plans.

Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.

Boeing has received the largest share of funding in the current CCiCAP phase amounting to about $480 million. SpaceX received $460 million for the Dragon V2 and Sierra Nevada Corp. (SNC) has received a half award of $227.5 million for the Dream Chaser mini-shuttle.

SNC will be the next company to complete all of NASA’s milestones this Fall, SNC VP Mark Sirangelo told me in an exclusive interview. SpaceX will be the final company finishing its milestones sometime in 2015.

Stay tuned here for Ken’s continuing Boeing, Sierra Nevada, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

SpaceX Rocket Prototype Explodes In Texas; ‘Rockets Are Tricky’, Musk Says

SpaceX's F9R rocket prototype during a successful test in May 2014. Credit: SpaceX/YouTube (screenshot)

No injuries are reported after a SpaceX rocket prototype detonated in Texas today (Aug. 22) after an anomaly was found in the rocket, the company said in a statement.

The  Falcon 9 Reusable (F9R) — a successor to the Grasshopper vertical take-off and landing rocket — was completing the latest in a series of ambitious tests that previously saw the prototype successfully testing new steerable fins.

“Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test,” SpaceX said in a statement (which you can read in full below the jump.) “As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.”


The company said it would provide more updates as it found information. SpaceX founder Elon Musk issued a brief statement of his own on Twitter:

Screenshot of a June 2014 F9R test flight.
Screenshot of a June 2014 F9R test flight.

Below is SpaceX’s statement:

Earlier today, in McGregor, Texas, SpaceX conducted a test flight of a three-engine version of the F9R test vehicle (successor to Grasshopper.) During the flight, an anomaly was detected in the vehicle and the flight termination system automatically terminated the mission.

Throughout the test and subsequent flight termination, the vehicle remained in the designated flight area. There were no injuries or near injuries. An FAA representative was present at all times.

With research and development projects, detecting vehicle anomalies during the testing is the purpose of the program. Today’s test was particularly complex, pushing the limits of the vehicle further than any previous test. As is our practice, the company will be reviewing the flight record details to learn more about the performance of the vehicle prior to our next test.

SpaceX will provide another update when the flight data has been fully analyzed.

Here are some recent Universe Today stories on the rocket:

Watch the Falcon 9 Rocket Booster Descend into the Ocean for its “Soft” Landing

Screenshot from the SpaceX webcast of the Falcon 9 launch on July 14, 2013.

SpaceX today released video from the Falcon 9 first stage flyback and landing video from the July 14 launch of six ORBCOMM advanced telecommunications satellites. This was a test of the reusability of the Falcon 9’s first stage and its flyback and landing system. It splashed down in the Atlantic Ocean, and SpaceX called it a “soft” landing, even though the booster did not survive the splashdown. SpaceX CEO Elon Musk tweeted on July 14 that the rocket booster reentry, landing burn and leg deployment worked well, but the hull of the first stage “lost integrity right after splashdown (aka kaboom).” He later reported that detailed review of rocket telemetry showed the booster took a “body slam, maybe from a self-generated wave.”

SpaceX today said last week’s test “confirms that the Falcon 9 booster is able consistently to reenter from space at hypersonic velocity, restart main engines twice, deploy landing legs and touch down at near zero velocity.”

This video is of much higher quality than the video from the first soft landing test in the ocean, back in April of this year following the launch of the CRS-3 mission for the Dragon spacecraft to the International Space Station.

Even though the booster has not been recoverable from either test (the April test saw too rough of seas to get the booster) SpaceX said that they received all the necessary data “to achieve a successful landing on a future flight. Going forward, we are taking steps to minimize the build up of ice and spots on the camera housing in order to gather improved video on future launches.

The booster tipping over is the nominal procedure (in water), but the booster did touch down in a vertical position; additionally, as seen in the video, the landing legs deployed perfectly, and the flyback boosters performed flawlessly.

“At this point, we are highly confident of being able to land successfully on a floating launch pad or back at the launch site and refly the rocket with no required refurbishment,” SpaceX said in today’s press release. “However, our next couple launches are for very high velocity geostationary satellite missions, which don’t allow enough residual propellant for landing. In the longer term, missions like that will fly on Falcon Heavy, but until then Falcon 9 will need to fly in expendable mode.”

The next attempt for a our next water landing will be on Falcon 9’s thirteenth flight, a launch to the ISS for the fourth resupply mission, but they indicated the test would have a “low probability of success.” That flight is currently scheduled for no earlier than September 12, 2014. The next big challenge comes in flights 14 (another ORBCOMM satellite launch) and 15 (Turkmen satellite), where the booster will attempt to land on a solid surface. Those flights are currently scheduled for NET October and November of 2014.

SpaceX Launches Six Commercial Satellites on Falcon 9; Landing Test Ends in “Kaboom”

Screenshot from the SpaceX webcast of the Falcon 9 launch on July 14, 2013.

SpaceX successfully launched six ORBCOMM advanced telecommunications satellites into orbit on Monday, July 14, to significantly upgrade the speed and capacity of their existing data relay network. The launch from Cape Canaveral Air Force Station in Florida had been delayed or scrubbed several times since the original launch date in May due to varying problems from payload integration issues, weather conditions and issues with the Falcon 9 rocket. But the launch went off without a hitch today and ORBCOMM reports that all six satellites have been successfully deployed in orbit.

SpaceX also used this launch opportunity to try and test the reusability of the Falcon 9’s first stage and its landing system while splashing down in the ocean. However, the booster did not survive the splashdown. SpaceX CEO Elon Musk reported that the rocket booster reentry, landing burn and leg deployment worked well, the hull of the first stage “lost integrity right after splashdown (aka kaboom),” Musk tweeted. “Detailed review of rocket telemetry needed to tell if due to initial splashdown or subsequent tip over and body slam.”

SpaceX wanted to test the “flyback” ability to the rocket, slowing down the descent of the rocket with thrusters and deploying the landing legs for future launches so the first stage can be re-used. These tests have the booster “landing” in the ocean. The previous test of the landing system was successful, but the choppy seas destroyed the stage and prevented recovery. Today’s “kaboom” makes recovery of even pieces of this booster unlikely.

As far as the ORBCOMM satellites, the six satellites launched today are the first part of what the company hopes will be a 17-satellite constellation. They hope to have all 17 satellites in orbit by the end of the 2014.

SpaceX Set to Launch Oft Delayed Falcon 9 with Commercial ORBCOMM Satellites on June 20 – Watch Live

File photo of SpaceX Falcon 9 rocket after successful static hot-fire test on June 13, 2014 on Pad 40 at Cape Canaveral, FL with ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com

A SpaceX Falcon 9 rocket was rolled out to its Florida launch pad early this morning at 1 a.m., Friday, June 20, in anticipation of blastoff at 6:08 p.m. EDT this evening on an oft delayed commercial mission for ORBCOMM to carry six advanced OG2 communications satellites to significantly upgrade the speed and capacity of their existing data relay network, affording significantly faster and larger messaging services.

The Falcon 9 rocket is lofting six second-generation ORBCOMM OG2 commercial telecommunications satellites from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.

Update (6/23): The Saturday launch was scrubbed due to 2nd stage pressure decrease and then was scrubbed on Saturday and Sunday due to weather and technical reasons. SpaceX must now delay the launch until the first week in July because of previously scheduled maintenance for the Eastern Test Range, which supports launches from Cape Canaveral Air Force Station. This also allows SpaceX to take “a closer look at a potential issue identified while conducting pre-flight checkouts during [Sunday’s] countdown,” the company said in statement on its website on June 23.

The next generation SpaceX Falcon 9 rocket is launching in its more powerful v1.1 configuration with upgraded Merlin 1D engines, stretched fuel tanks, and the satellites encapsulated inside the payload fairing.

SpaceX Falcon 9 rocket is set for liftoff, Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites from Pad 40 on Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket is set for liftoff, Friday, June 20, 2014 on ORBCOMM OG2 mission with six OG2 satellites from Pad 40 on Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Falcon 9 will deliver all six next-generation OG2 satellites to an elliptical 750 x 615 km low-Earth orbit. They will be deployed one at a time starting 15 minutes after liftoff.

The first stage is also equipped with a quartet of landing legs to conduct SpaceX’s second test of a controlled soft landing in the Atlantic Ocean in an attempt to recover and eventually use the stage as a means of radically driving down overall launch costs – a top goal of SpaceX’s billionaire CEO and founder Elon Musk.

The launch has been delayed multiple times from May due to technical problems with both the Falcon 9 rocket and the OG2 satellites.

The May launch attempt was postponed when a static hot-fire test was halted due to a helium leak and required engineers to fix the issues.

Last week on June 13, SpaceX conducted a successful static hot-fire test of the 1st stage Merlin engines (see photos above and below) which had paved the way for blastoff as soon as Sunday, June 15.

However ORBCOMM elected to delay the launch in order to conduct additional satellite testing to ensure they are functioning as expected, the company reported.

“In an effort to be as cautious as possible, it was decided to perform further analysis to verify that the issue observed on one satellite during final integration has been fully addressed. The additional time to complete this analysis required us to postpone the OG2 Mission 1 Launch,” said ORBCOMM.

You can watch the launch live this evening with real time commentary from SpaceX mission control located at their corporate headquarters in Hawthorne, CA.

Watch the SpaceX live webcast beginning at 5:35 pm EDT here: www.spacex.com/webcast.

An ORBCOMM OG-2 satellite undergoes testing prior to launch. Credit: Sierra Nevada Corp
An ORBCOMM OG-2 satellite undergoes testing prior to launch. Credit: Sierra Nevada Corp

The six new satellites will join the existing constellation of ORBCOMM OG1 satellites launched over 15 years ago.

The weather outlook is currently not promising with only a 30% chance of favorable conditions at launch time. The launch window extends for 53 minutes.

The primary concerns according to the USAF forecast are violations of the Cumulus Cloud Rule, Thick Cloud Rule, Lightning Rule, Anvil Cloud Rule.

In the event of a scrub, the backup launch window is Saturday June 21. The weather outlook improves to 60% ‘GO’.

SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL.  Launch is slated for Friday, June 20, 2014  on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket after successful static hot-fire test on June 13 on Pad 40 at Cape Canaveral, FL. Launch is slated for Friday, June 20, 2014 on ORBCOMM OG2 mission with six OG2 satellites. Credit: Ken Kremer/kenkremer.com

Fueling of the rocket’s stages begins approximately four hours before blastoff – shortly after 2 p.m. EDT. First with liquid oxygen and then with RP-1 kerosene propellant.

Each of the 170 kg OG2 satellites was built by Sierra Nevada Corporation and will provide a much needed boost in ORBCOMM’s service capacity.

The ORBCOMM OG2 mission will launch six OG2 satellites, the first six of a series of OG2 satellites launching on SpaceX’s Falcon 9 vehicle.  Credit: SpaceX
The ORBCOMM OG2 mission will launch six OG2 satellites, the first six of a series of OG2 satellites launching on SpaceX’s Falcon 9 vehicle. Credit: SpaceX
10 more OG2 satellites are scheduled to launch on another SpaceX Falcon 9 in the fourth quarter of 2014 to complete ORBCOMM’s next generation constellation.

“ORBCOMM’s OG2 satellites will offer up to six times the data access and up to twice the transmission rate of ORBCOMM’s existing OG1 constellation,” according to the SpaceX press kit.

“Each OG2 satellite is the equivalent of six OG1 satellites, providing faster message delivery, larger message sizes and better coverage at higher latitudes, while drastically increasing network capacity. Additionally, the higher gain will allow for smaller antennas on communicators and reduced power requirements, yielding longer battery lives.”

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter.

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Video: SpaceX Tests New Steerable ‘Fins’ on the Falcon 9R

Screenshot of a June 2014 F9R test flight.

Well, this is cool: A new video from SpaceX shows the Falcon 9 Reusable (F9R) rocket during a 1,000 meter test flight at the SpaceX facility in McGregor, Texas. This was the first flight test of a set of steerable fins that provide control of the rocket during the fly-back portion of the return flight. The fins deploy approximately 1:15 into the test flight and return to their original locked position just prior to landing.

This seems like a truly smooth flight!

These types of fins are not new, but are new for human space flight. They’ve been used on missiles and bombs to aid in precision targeting, and likewise will help the F9R to land precisely on target.

SpaceX confirmed that during the early tests flights of F9R, the landing legs will be fixed in the down position, however soon they will transition to a liftoff with the legs stowed against the side of the rocket with the legs extending just before landing. The company also said that future test flights of F9R will be at SpaceX’s New Mexico facility which will allow them to test in higher altitude flights, give them the chance to prove unpowered guidance and to prove out landing cases that are “more flight-like.”

Elon Musk: ‘I’m Hopeful That The First People Can Be Taken To Mars in 10, 12 Years’

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Elon Musk, CEO of SpaceX, is a hot topic in the media these days. He recently unveiled a manned version of his successful Dragon spacecraft. He’s talking about retrieving the first stage of his Falcon 9 rocket, a feat that has never been accomplished.

Last night (June 18), Musk spoke on CNBC because his company was named #1 to the cable network’s second annual Disrupter 50 list. You can watch portions of the interview here and we’ve isolated the space-related parts below based on the transcript from CNBC (which does not exactly match Musk’s words, but is pretty close.)

And Musk is still a big fan of Mars exploration, as he says in the interview he hopes to see people walk on the planet in 10-12 years.

On attempting to recover the first stage of the Falcon 9 rocket that will launch six Orbcomm satellites on Friday, if the weather holds (it is only 30% go according to local news reports):

Essentially what I was alluding to a moment ago was is to be able to recover the rocket booster and then refly it. That’s the revolutionary potential. Now we have been trying to do that for 12 years, and haven’t yet succeeded. But I feel as though we are finally close to achieving it. We have a shot with the next launch of recovering the rocket booster. If not with this launch, I think a very good chance later this year, and then potentially to refly the booster next year. This would really mark a significant change in the technology of rocketry.

'Threading the needle', the Falcon 9/Dragon vehicle passes through the catenary lightning wires as it roars from the pad on the CRS-3 mission.  Credit: nasatech.net
‘Threading the needle’, the Falcon 9/Dragon vehicle passes through the catenary lightning wires as it roars from the pad on the CRS-3 mission. Credit: nasatech.net

Musck also spoke on what would happen if SpaceX does not get the next round of commercial crew funding from NASA. The company is right now being funded along with Boeing (CST-100) and Sierra Nevada (Dream Chaser), but NASA is still figuring out how many companies it can afford to back in the next stage, which will be announced later this year. Musk revealed the manned prototype version of its Dragon spacecraft to great media fanfare in late May.

First of all, I should acknowledge the critical role NASA played in the success of SpaceX. We wouldn’t be are where we are without the help of NASA. And it’s possible we may not win the commercial crew contract. We certainly have done that we can for our part. And I think we have got a great design solution. If NASA in the end doesn’t go with us, because also we are competing with big established companies like Boeing, then we’ll do our best to continue on our own with our own money. […]

Well it definitely would slow us down, but we would keep going and we should keep launching commercial satellites. We have an existing contract to transfer…from the space station so we would keep going. It just would be slower.

Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX
Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX

Musk on how quickly he wants to see humans on Mars:

This is a very difficult thing, obviously. I’m hopeful that the first people could be taken to Mars in 10, 12 years. I think it’s certainly possible for that to occur. The thing that matters long term is to have a self-sustaining city on Mars. To make life multi-planetary. That will define a fundamental bifurcation of the future of human civilization. We’ll either be a multi-planet species and out there among the stars, or a single-planet species until some eventual extinction event, natural or man-made.

Why it’s difficult to get public funding right now:

The incentive structure tends to be short-term. You can trace it back to people that own the stocks, portfolio managers. They are evaluated on a quarterly basis, or at least an annual basis. They push companies to produce results on a quarterly or annual basis. With SpaceX we are trying to develop technology that will ultimately be able to take large numbers of people to Mars. That’s really difficult to get portfolio managers. It’s beyond their tenure in owning the stock. So it is difficult to ask them to like that.

The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.
The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.

Which is harder, getting people to Mars or building a car battery that costs less than $5,000 (which is an oblique reference to Musk’s Tesla line of vehicles):

I think, probably, Mars. The car battery certainly is hard. I’m quite optimistic, though, about improvements in the battery price or the cost of the battery. The fundamental cost. We have daily meetings with Panasonic, our key development partner, on this. I am really feeling quite good about being able to produce a compelling mass market car in about three years.

What would be a “truly disruptive” technology:

I mean, at this point, human life span is mostly about old age. It’s not about cancer or anything else. If you cured cancer, I think the average life expectancy would increase from two years. You would go from 80 to 82, or something like that. We just have a genetic life span. It’s kind of like if you take a fruit fly and gave it the best exercise and diet possible, the perfect life. Maybe it will live four weeks instead of three weeks. Genetics just drives a lot of these things. So for something to be truly disruptive on that front, you would want to do something with genetics. I don’t have much involvement there. Or any involvement, really.

Eager To Tour SpaceX’s Headquarters? Here’s Your Chance To Go For Charity

The SpaceX Dragon capsule on approach to the ISS during the COTS 2 mission. Credit: NASA.

Hot off the excitement of showing off the inside of its manned Dragon spacecraft, SpaceX is prepared to offer a few members of the public a rare chance for a tour of its facilities. There’s a lot on the agenda, including seeing an uncrewed Dragon that has actually returned from space.

Here’s the deal: SpaceX has partnered with Charitybuzz to offer a single tour for up to 10 people. Bidding is open now and closes June 19 at this site.

“At SpaceX your party will tour the world’s largest facility developing the complete design, fabrication and assembly of rockets, engines and spacecraft,” SpaceX stated on the Charitybuzz website.

“You will see Falcon 9 rockets being assembled, Merlin engines being constructed, Dragon spacecraft in production and even a Dragon that has returned from space! Following the tour, guests will have a chance to meet Gwynne Shotwell, President and COO [chief operating officer] of SpaceX in person.”

Just like for NASA Socials, you are responsible for your own travel and accommodation. The tour is expected to last 1.5 to 2 hours and will take place at the SpaceX headquarters in Hawthorne, Calif. The benefitting charity is the Women in Technology Foundation, whose stated mandate is “education to create awareness, excitement, and opportunity among girls and women, and to encourage them to work in technology-related fields.”

More details are available at Charitybuzz. SpaceX uses its Dragon spacecraft to make regular cargo shipments to the International Space Station, and is one of three companies competing for the chance to do the same with astronauts.

Enter the Dragon: First Look Inside SpaceX’s New Crew Transporter to Orbit – Photos

First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/America Space

Would you ‘Enter the Dragon’?
First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace[/caption]

Would you like to ‘Enter the Dragon’ for an up close look inside SpaceX’s new ‘V2’ crew transport ship to Earth orbit and the space station?

We’ve shown you lots of exterior shots of SpaceX’s next generation manned Dragon V2 spacecraft after Billionaire entrepreneur and SpaceX CEO Elon Musk pulled the curtain off to reveal his future plans for human spaceflight on May 29 during a live webcast from SpaceX HQ in Hawthorne, Calif.

And we’ve shown you the cool animation to see exactly ‘How it Works!’ from launch to landing.

Now we’ve compiled a stunning collection of imagery revealing what it’s like to actually stand within the gleaming walls of the futuristic Dragon spaceship from an astronauts perspective.

Check out the gallery of Dragon V2 imagery above and below.

Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX
Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX

Experience this exciting new chapter of American ‘Commercial Human Spaceflight’ coming to fruition.

NASA’s Commercial Crew Program (CCP) is a public private partnership between NASA and a trio of amazing American aerospace companies – SpaceX, Boeing amd Sierra Nevada – to create inexpensive but reliable new astronaut spaceships to the High Frontier.

And NASA’s unprecedented commercial crew program is so far ahead of any international competitors that I think they’ll soon be knocking at the door and regret not investing in a similar insightful manner.

The goal is to get American’s back in space on American rockets from American soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to the International Space Station (ISS) and back.

Potential crew members check out the seats of the new SpaceX Dragon V2 next generation astronaut spacecraft. Credit:  Robert Fisher/America Space
Potential crew members check out the seats of the new SpaceX Dragon V2 next generation astronaut spacecraft. Credit: Robert Fisher/America Space

“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview – here.

SpaceX CEO Elon Musk pulls open the hatch to ;Enter the Dragon’.    Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk pulls open the hatch to ‘Enter the Dragon’. Credit: Robert Fisher/America Space

Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s CCP.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

The Dragon V2 spacecraft's seating arrangement with the control panel swung up to allow crewmembers to get into their seats. Once the crew is in place, the control panel swings down and locks in launch position. Credit: NASA/Dimitri Gerondidakis
The Dragon V2 spacecraft’s seating arrangement with the control panel swung up to allow crewmembers to get into their seats. Once the crew is in place, the control panel swings down and locks in launch position. Credit: NASA/Dimitri Gerondidakis

A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Meet SpaceX’s New Manned Dragon: Cool Animation Shows ‘How It Works’

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX


Caption: Animation of SpaceX Dragon V2 astronaut transporter. Credit: SpaceX

Would you like to meet and fly aboard SpaceX’s next generation manned Dragon V2 spacecraft?

Well hop aboard for a ride, take a seat and prepare for the thrill of a lifetime to the International Space Station (ISS) and back.

Watch the cool animation above to see exactly ‘How it Works!’

Now you can experience the opening salvo in the exciting new chapter of ‘Commercial Human Spaceflight.’

The commercial crew effort is led by a trio of private American aerospace company’s (SpaceX, Boeing & Sierra Nevada) in an intimate partnership with NASA to get American’s back in space on American rockets from American Soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to orbit.

“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview.

Billionaire entrepreneur and SpaceX CEO Elon Musk let the curtain to the future drop on Thursday, May 29 to reveal his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA.

And with a flair worthy of the premiere of a blockbuster Hollywood Science Fiction movie he unveiled the gum-dropped shaped Dragon V2 – and the lively animation. Although its not known if he’ll provide the crews with musical entertainment during the trip too.

As you’ll quickly notice watching the animation, the sleek styled V2 manned Dragon is a far cry ahead of the current V1 cargo Dragon.

“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level,” said Musk.

The top of the V2 is equipped to open up and expose a docking probe so it’s able to dock autonomously at the ISS – and at the same port as NASA’s now retired space shuttle orbiters.

‘Catching a Dragon by the tail’- with the Canadian built robot arm as the stations astronauts like to say and berthing it at an Earth-facing port on the Harmony module, will be a thing of the past.

“No robotic arm necessary!” Musk explained.

SpaceX Dragon V2 docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX

And for departure there’s another big difference – powerful SuperDraco landing rockets for pinpoint touchdown accuracy rather than an ocean splashdown.

The animation shows a thrilling land landing back at the Kennedy Space Center launch base.

“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter,” Musk said.

“I think that’s what a spaceship should be able to do.”

Musk and SpaceX are not alone aiming to get Americans back to space.

Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

Read my earlier “Dragon V2” unveiling event articles – here, here and here.

Enjoy!

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer