Elon Musk Releases Dramatic Imagery of Mostly Successful Falcon 9 1st Recovery Attempt, Hard Landing on Drone Ship

Rocket hits hard at ~45 deg angle, smashing legs and engine section. Credit: SpaceX/Elon Musk

Rocket hits hard at ~45 deg angle, smashing legs and engine section. Credit: SpaceX/Elon Musk
See video below[/caption]

Dramatic new photos and video of the daring and mostly successful attempt by Space X to land their Falcon 9 booster on an ocean-going “drone ship” were released this morning, Friday, Jan. 16, by SpaceX CEO and founder Elon Musk.

Musk posted the imagery online via his twitter account and they vividly show just how close his team came to achieving total success in history’s first attempt to land and recover a rocket on a tiny platform in the ocean.

Here’s the video: “Close, but no cigar. This time.”

The rocket landing and recovery attempt was a secondary objective of SpaceX, that immediately followed the spectacular nighttime blastoff of the Falcon 9 on Jan. 10 carrying the SpaceX Dragon cargo freighter spacecraft on a critical resupply mission for NASA bound for the space station.

The history making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a miniscule platform at sea using a rocket assisted descent by the first stage Merlin engines aided by steering fins.

The first stage rocket reached an altitude of over 100 miles after firing nine Merlins as planned for nearly three minutes. It had to be slowed from traveling at a velocity of about 2,900 mph (1300 m/s). The descent maneuver has been likened to someone balancing a rubber broomstick on their hand in the middle of a fierce wind storm.

The imagery shows the last moments of the descent as the rocket hits the edge of the drone ship at a 45 degree angle with its four landing legs extended and Merlin 1D engines firing.

Before impact, fins lose power and go hardover. Engines fights to restore, but … Credit: SpaceX/Elon Musk
Before impact, fins lose power and go hardover. Engines fights to restore, but … Credit: SpaceX/Elon Musk

Musk tweeted that the first stage Falcon 9 booster ran out of hydraulic fluid and thus hit the barge.

“Rocket hits hard at ~45 deg angle, smashing legs and engine section,” Musk explained today.

Lacking hydraulic fluid the boosters attached steering fins lost power just before impact.

“Before impact, fins lose power and go hardover. Engines fights to restore, but …,” Musk added.

Residual fuel and oxygen combine.  Credit: SpaceX/Elon MuskSpaceX/Elon Musk
Residual fuel and oxygen combine. Credit: SpaceX/Elon MuskSpaceX/Elon Musk

This ultimately caused the Falcon 9 to crash land as the legs and engine section were smashed and destroyed as the fuel and booster burst into flames. The ship survived no problem.

“Residual fuel and oxygen combine.”

“Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day!” said Musk.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted within hours after the launch and recovery attempt.

As I wrote on launch day here at Universe Today, despite making a ‘hard landing’ on the vessel dubbed the ‘autonomous spaceport drone ship,’ the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

Whereas virtually every other news outlet quickly declared the landing attempt a “Failure” in the headline, my assessment as a scientist and journalist was the complete opposite!!

In my opinion the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night (Jan. 11 UK time), discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

“Is it safe? Was SpaceX brave or foolhardy? Why is this significant? Will SpaceX succeed in the future?” the BBC host asked me.

I replied; “It was a 99% success” and more …..

“Am super proud of my crew for making huge strides towards reusability on this mission. You guys rock!” Musk declared in a later tweet.

SpaceX achieved virtually all of their objectives in the daunting feat except for a soft landing on the drone ship.

This was a bold experiment involving re-lighting one of the first stage Merlin 1D engines three times to act as a retro rocket to slow the stages descent and aim for the drone ship.

Four attached hypersonic grid fins and a trio of Merlin propulsive burns succeeded in slowing the booster from hypersonic velocity to subsonic and guiding it to the ship.

The drone ship measures only 300 feet by 170 feet. That’s tiny compared to the Atlantic Ocean.

The first stage was planned to make the soft landing by extending four landing legs to a width of about 70 feet to achieve an upright landing on the platform with a accuracy of 30 feet (10 meters).

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing, that could come as early as a few weeks on the launch of the DSCOVR mission in late January or early February.

“Upcoming flight already has 50% more hydraulic fluid, so should have plenty of margin for landing attempt next month.”

Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day! Credit: SpaceX/Elon Musk
Full RUD (rapid unscheduled disassembly) event. Ship is fine minor repairs. Exciting day! Credit: SpaceX/Elon Musk

Musk’s daring vision is to recover, refurbish and reuse the first stage and dramatically reduce the high cost of access to space, by introducing airline like operational concepts.

It remains to be seen whether his vision of reusing rockets can be made economical. Most of the space shuttle systems were reused, except for the huge external fuel tanks, but it was not a cheap proposition.

But we must try to cut rocket launch costs if we hope to achieve routine and affordable access to the high frontier and expand humanity’s reach to the stars.

The Falcon 9 launch itself was a flawless success, blasting off at 4:47 a.m. EST on Jan. 10 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The Dragon CRS-5 spacecraft was loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, the CATS science payload, student research investigations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person crew serving aboard the ISS.

It successfully rendezvoused at the station on Jan. 12 after a two day orbital chase, delivering the critical cargo required to keep the station stocked and humming with science.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Captured at Station Loaded with Critical Supplies and Science

The Canadarm2 has the SpaceX Dragon in its grips on Jan 12, 2015. Credit: NASA TV

The commercial SpaceX cargo Dragon, loaded with over 2.6 tons of critically needed supplies and science experiments, was captured by the crew aboard the International Space Station (ISS) this morning (Jan. 12) while soaring over the Mediterranean Sea.

The SpaceX Dragon CRS-5 cargo vessel arrived at the station following a flawless two day orbital pursuit and spectacular nighttime blastoff atop the SpaceX Falcon 9 on Jan. 10 at 4:47 a.m. EST from Cape Canaveral Air Force Station in Florida.

Note: This breaking news story is being updated. Check back frequently for updates.

Dragon was successfully berthed and bolted into place a few hours later at 8:54 a.m. EST.

Working at the robotics work station inside the seven windowed domed cupola, Expedition 42 Commander Barry “Butch” Wilmore of NASA, with the assistance of Flight Engineer Samantha Cristoforetti of the European Space Agency, successfully captured the Dragon spacecraft with the station’s Canadian-built robotic arm at 5:54 a.m. EST.

Wilmore grappled Dragon with the station’s 57-foot-long (17-meter-long) robotic arm at 5:54 a.m. EST, about 18 minutes ahead of schedule, in an operation shown live on NASA TV, back-dropped by breathtaking views of “our beautiful Earth” passing by some 260 miles (410 kilometers) below.

Among the goodies aboard are belated Christmas presents for the crew. The Falcon 9 and Dragon were originally scheduled to liftoff in December and arrive in time for the Christmas festivities.

The cargo freighter flew beneath the station to arrive at the capture point 32 feet (10 meters) away. Dragon’s thrusters were disabled at the time of grappling.

Robotics officers at Houston Mission Control then began remotely maneuvering the arm to berth Dragon at the Earth-facing port on the station’s Harmony module starting at 7:45 a.m. EST.

Dragon is being attached via the common berthing mechanism (CBM) using four gangs of four bolts apiece to accomplish a hard mate to Harmony. The overall grappling and berthing process requires a few hours.

Dragon was successfully berthed and bolted into place at 8:54 a.m. EST and its now part of the space station.

The crew will conduct leak pressure checks, remove the docking mechanism and open the hatch later today or tomorrow.

#Dragon is about 90 feet from #ISS, closing in on its capture point.  Credit: NASA TV
#Dragon is about 90 feet from #ISS, closing in on its capture point. Credit: NASA TV

CRS-5 marks the company’s fifth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

Overall this is the sixth Dragon to arrive at the ISS.

The ISS cannot function without regular deliveries of fresh cargo by station partners from Earth.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere that directly impact the global climate.

CATS is loaded aboard the unpressurized trunk of Dragon.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education, which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS which exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed, hopefully by late 2015, on an alternate rocket, the Atlas V.

SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, carrying the Dragon resupply spacecraft to the International Space Station.   Credit: John Studwell/AmericaSpace
SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL, carrying the Dragon resupply spacecraft to the International Space Station. Credit: John Studwell/AmericaSpace

Dragon will remain attached to the ISS for about four weeks until Feb. 10.

SpaceX also had a secondary objective of recovering the Falcon 9 booster’s first stage via an unprecedented precision guided landing on an ocean-going “drone.”

The history making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

In my opinion the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night, discussing SpaceX’s first attempt to land and return their Falcon-9 booster.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV

Huge Rocket Recovery Strides Accomplished, SpaceX Drone Ship Back in Port

SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, carrying the Dragon resupply spacecraft to the International Space Station. Credit: John Studwell/AmericaSpace

“Huge strides towards [rocket] reusability” were achieved, says SpaceX CEO Elon Musk, following Saturday morning’s (Jan. 10) flawless launch of his firm’s Falcon 9 rocket on a critical resupply mission to the space station for NASA, which also had a secondary objective of recovering the booster’s first stage via an unprecedented precision-guided landing on an ocean-going “drone.”

Despite making a “hard landing” on the vessel dubbed the “autonomous spaceport drone ship,” the 14 story tall Falcon 9 first stage did make it to the drone ship, positioned some 200 miles offshore of the Florida-Carolina coast, northeast of the launch site in the Atlantic Ocean. The rocket broke into pieces upon hitting the barge.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted soon after the launch and recovery attempt.

The drone ship, along with pieces of the rocket, was towed back to the Port of Jacksonville, FL, this afternoon, Sunday, Jan. 11. Photos captured by locals, and posted today on Reddit, NASASpaceflight and Spaceflight Now, showed the ship was intact with some damage, as reported by Musk.

The SpaceX ‘autonomous spaceport drone ship’ being towed into the Port of Jacksonville, Fla, on 11 Jan 2015 with possible pieces of the SpaceX Falcon 9 first stage under tarps.
The SpaceX “autonomous spaceport drone ship” being towed into the Port of Jacksonville, FL, on 11 Jan 2015 with possible pieces of the SpaceX Falcon 9 first stage under tarps. Credit: Stephen Clark/Spaceflight Now

The goal of the commercial Falcon 9 rocket was to launch the SpaceX Dragon CRS-5 cargo vessel on a mission bound for the International Space Station (ISS). It lit up the night skies all around the Florida Space Coast following a flawless liftoff at 4:47 a.m. EST from Cape Canaveral Air Force Station.

After a two day chase, Dragon will reach the ISS at about 6:12 a.m. EST on Monday, Jan. 12. NASA TV live coverage starts at 4:30 a.m. EST.

The history-making attempt at recovering the Falcon 9 first stage was a first of its kind experiment to accomplish a pinpoint soft landing of a rocket onto a tiny platform in the middle of a vast ocean using a rocket assisted descent.

“Am super proud of my crew for making huge strides towards reusability on this mission. You guys rock!” Musk declared in a later tweet.

Whereas virtually every other news outlet declared the landing attempt a “failure” in the headline, my assessment as a scientist is the complete opposite – and that the experiment was “a very good first step towards the bold company goal of recovery and re-usability in the future” as I wrote in my post launch report here at Universe Today.

Listen to my live radio interview with BBC 5LIVE conducted Saturday night, discussing SpaceX’s first attempt to land and return their Falcon 9 booster.

This was a daring experiment involving re-lighting one of the first stage Merlin 1D engines three times to act as a retro rocket to slow the stage’s descent and aim for the drone ship.

The drone ship measures only 300 feet by 170 feet. That’s tiny compared to the Atlantic Ocean.

SpaceX achieved virtually all of their objectives in the daunting feat except for a soft landing on the drone ship.

The grid fins and trio of Merlin propulsive burns succeeded in slowing the booster from hypersonic velocity to subsonic.

The first stage was planned to make the soft landing by extending four landing legs to a width of about 70 feet to achieve an upright landing on the platform.

One of the possible outcomes of today. Falcon 9 sits on the barge, ready to go back home. Image Credit: Reddit user zlsa (zlsa.github.io) CC-BY-SA.
Artist’s concept view of Falcon 9 on the barge, ready to go back home. Image Credit: Reddit user zlsa (zlsa.github.io) CC-BY-SA.

The hard landing apparently was caused by a lack of hydraulic fluid in the final stages of the landing

“Grid fins worked extremely well from hypersonic velocity to subsonic, but ran out of hydraulic fluid right before landing,” Musk tweeted.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land, and several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing, that could come as early as February.

“Upcoming flight already has 50% more hydraulic fluid, so should have plenty of margin for landing attempt next month.”

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Musk’s daring vision is to recover, refurbish, and reuse the first stage and dramatically reduce the high cost of access to space by introducing airline like operational concepts.

It remains to be seen whether his vision of reusing rockets can be made economical. Most of the space shuttle systems were reused, except for the huge external fuel tanks, but it was not a cheap proposition.

So this ocean recovery attempt is a critical first step towards that long term effort.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Photo of returning SpaceX ‘autonomous spaceport drone ship’ shows possible damage to onboard gear and possibly a few rocket parts under tarps.  Credit: Reddit
Photo of returning SpaceX “autonomous spaceport drone ship” shows possible damage to onboard gear and possibly a few rocket parts under tarps. Credit: Reddit

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS which exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed, hopefully by late 2015 on an alternate rocket, the Atlas V.

Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 Grasshopper reusable rocket undergoing testing. Credit: SpaceX
A SpaceX Falcon 9 Grasshopper reusable rocket undergoing testing.
Credit: SpaceX
A Falcon 9 Grasshopper conducting VTVL testing. Credit: SpaceX
A Falcon 9 Grasshopper conducting VTVL testing. Credit: SpaceX

SpaceX Successfully Launches Cargo Ship to Station and Hard Lands Rocket on “Drone Ship”

The SpaceX Falcon 9 rocket is thundering away from Cape Canaveral Air Force Station on its way to a Monday-morning rendezvous with the International Space Station. The booster’s nine Merlin engines are generating 1.3 million pounds of thrust as the vehicle begins its climb to orbit. Credit: NASA

SpaceX successfully launched their commercial Falcon 9 rocket and Dragon cargo ship on a critical mission for NASA bound for the space station this morning, Jan. 10, while simultaneously accomplishing a hard landing of the boosters first stage on an ocean-floating “drone ship” platform in a very good first step towards the bold company goal of recovery and re-usability in the future.

The spectacular night time launch of the private SpaceX Falcon 9 rocket lit up the skies all around the Florida Space Coast and beyond following a flawless on time liftoff at 4:47 a.m. EST from Cape Canaveral Air Force Station.

The nine Merlin 1D engines of the 208 foot-tall Falcon 9 generated 1.3 million pounds of liftoff thrust as the rocket climbed to orbit on the first SpaceX launch of 2015.

The Dragon CRS-5 mission is on its way to a Monday-morning rendezvous with the International Space Station (ISS).

It is loaded with more than two tons of supplies and NASA science investigations for the six person crew aboard the massive orbiting outpost.

A secondary goal of SpaceX was to conduct a history-making attempt at recovering the 14 story tall Falcon 9 first stage via a precision landing on an ocean-going landing platform known as the “autonomous spaceport drone ship.”

SpaceX CEO Elon Musk quickly tweeted that good progress was made, and as expected, more work needs to be done.

This was an experiment involving re-lighting one of the first stage Merlin engines three times to act as a retro rocket to slow the stages descent and aim for the drone ship.

“Rocket made it to drone spaceport ship, but landed hard. Close, but no cigar this time. Bodes well for the future tho,” Musk tweeted soon after the launch and recovery attempt.

“Ship itself is fine. Some of the support equipment on the deck will need to be replaced…”

“Didn’t get good landing/impact video. Pitch dark and foggy. Will piece it together from telemetry and … actual pieces.”

Musk’s daring vision is to recover, refurbish and reuse the first stage and dramatically reduce the high cost of access to space, by introducing airline like operational concepts.

The ‘autonomous spaceport drone ship’ was positioned some 200 to 250 miles offshore of the launch site in the Atlantic Ocean along the rockets flight path, flying along the US Northeast coast to match that of the ISS.

The autonomous spaceport drone ship measure only 300 by 100 feet, with wings that extend its width to 170 feet. That’s tiny compared to the Atlantic Ocean.

Therefore the SpaceX team was successful in accomplishing a rocket assisted descent and pinpoint landing in the middle of a vast ocean, albeit not as slow as hoped.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

So they will learn and move forward to the next experimental landing.

SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station.   Credit: NASA/Jim Grossmann
SpaceX rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station carrying the Dragon resupply spacecraft to the International Space Station. Credit: NASA/Jim Grossmann

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

“We are delighted to kick off 2015 with our first commercial cargo launch of the year,” said NASA Administrator Charles Bolden in a statement.

“Thanks to our private sector partners, we’ve returned space station resupply launches to U.S. soil and are poised to do the same with the transport of our astronauts in the very near future.”

“Today’s launch not only resupplies the station, but also delivers important science experiments and increases the station’s unique capabilities as a platform for Earth science with delivery of the Cloud-Aerosol Transport System, or CATS instrument. I congratulate the SpaceX and NASA teams who have made today’s success possible. We look forward to extending our efforts in commercial space to include commercial crew by 2017 and to more significant milestones this year on our journey to Mars.”

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

The launch marked the first US commercial resupply launch since the catastrophic destruction of an Orbital Sciences Antares rocket and Cygnus Orb-3 spacecraft bound for the ISS exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New Mission: DSCOVR Satellite will Monitor the Solar Wind

Artist's concept of the DSCOVR satellite in orbit. Credit: NOAA

Solar wind – that is, the stream of charged electrons and protons that are released from the upper atmosphere of the Sun – is a constant in our Solar System and generally not a concern for us Earthlings. However, on occasion a solar wind shock wave or Coronal Mass Ejection can occur, disrupting satellites, electronics systems, and even sending harmful radiation to the surface.

Little wonder then why NASA and the National Oceanic and Atmospheric Administration (NOAA) have made a point of keeping satellites in orbit that can maintain real-time monitoring capabilities. The newest mission, the Deep Space Climate Observatory (DSCOVR) is expected to launch later this month.

A collaborative effort between NASA, the NOAA, and the US Air Force, the DSCOVR mission was originally proposed in 1998 as a way of providing near-continuous monitoring of Earth. However, the $100 million satellite has since been re-purposed as a solar observatory.

In this capacity, it will provide support to the National Weather Service’s Space Weather Prediction Center, which is charged with providing advanced warning forecasts of approaching geomagnetic storms for people here on Earth.

Illustration showing the DSCOVR satellite in orbit L1 orbit, located one million miles away from Earth. At this location, the satellite will be in the best position to monitor the constant stream of particles from the sun, known as solar wind, and provide warnings of approaching geomagnetic storms caused by solar wind about an hour before they reach Earth. Credit: NOAA
Illustration showing the DSCOVR satellite in L1 orbit, located 1.5 million km  (930,000 mi) away from Earth. Credit: NOAA

These storms, which are caused by large-scale fluctuations in solar wind, have the potential of disrupting radio signals and electronic systems, which means that everything from telecommunications, aviation, GPS systems, power grids, and every other major bit of infrastructure is vulnerable to them.

In fact, a report made by the National Research Council estimated that recovering from the most extreme geomagnetic storms could take up to a decade, and cost taxpayers in the vicinity of $1 to $2 trillion dollars. Add to the that the potential for radiation poisoning to human beings (at ground level and in orbit), as well as flora and fauna, and the need for alerts becomes clear.

Originally, the satellite was scheduled to be launched into space on Jan. 23rd from the Cape Canaveral Air Force Station, Florida. However, delays in the latest resupply mission to the International Space Station have apparently pushed the date of this launch back as well.

According to a source who spoke to SpaceNews, the delay of the ISS resupply mission caused scheduling pressure, as both launches are being serviced by SpaceX from Cape Canaveral. However, the same source indicated that there are no technical problems with the satellite or the Falcon 9 that will be carrying it into orbit. It is now expected to be launched on Jan. 29th at the latest.

Credit: NOAA
SpaceX will be providing the launch service for DSCOVR, which is now expected to be launched by the end of Jan aboard a Falcon 9 rocket (pictured here). Credit: NOAA

Once deployed, DSCOVR will eventually take over from NASA’s aging Advanced Composition Explorer (ACE) satellite, which has been in providing solar wind alerts since 1997 and is expected to remain in operation until 2024. Like ACE, the DSCOVER will orbit Earth at Lagrange 1 Point (L1), the neutral gravity point between the Earth and sun approximately 1.5 million km (930,000 mi) from Earth.

From this position, DSCOVR will be able to provide advanced warning, roughly 15 to 60 minutes before a solar wind shockwave or CME reaches Earth. This information will be essential to emergency preparedness efforts, and the data provided will also help improve predictions as to where a geomagnetic storm will impact the most.

These sorts of warnings are essential to maintaining the safety and integrity of infrastructure, but also the health and well-being of people here on Earth. Given our dependence on high-tech navigation systems, electricity, the internet, and telecommunications, a massive geomagnetic storm is not something we want to get caught off guard by!

And be sure to check out this video of the DSCOVR mission, courtesy of the NOAA:

Further Reading: NOAA

Weekly Space Hangout – Jan 9, 2015: Andy Weir of “The Martian”

Host: Fraser Cain (@fcain)
Special Guest: Andy Weir , author of “The Martian”
Andy was first hired as a programmer for a national laboratory at age fifteen and has been working as a software engineer ever since. He is also a lifelong space nerd and a devoted hobbyist of subjects like relativistic physics, orbital mechanics, and the history of manned spaceflight. “The Martian” is his first novel.

Guests:
Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter)
Ramin Skibba (@raminskibba)
Brian Koberlein (@briankoberlein)
Dave Dickinson (@astroguyz / www.astroguyz.com)
Nicole Gugliucci (cosmoquest.org / @noisyastronomer)
Continue reading “Weekly Space Hangout – Jan 9, 2015: Andy Weir of “The Martian””

SpaceX’s Rocket Explained So Simply A Kid Could Understand

"Bird 9", a SpaceX parody of a famous xkcd cartoon called "Up Goer Nine." SpaceX used it to demonstrate its Falcon 9 rocket. Click for full image. Credit: SpaceX/Twitter/Imgur

Rocket science is difficult stuff, but we don’t always necessarily have to explain it that way. It’s important at times to break science down as simply as we can, for purposes ranging from simple understanding to making it accessible to children.

A couple of days ago, SpaceX posted a brilliant parody of a famous xkcd cartoon to describe the organization’s Falcon 9 rocket. Called “Bird 9”, it describes the components of the rocket using only the words that are used most often in speech.

The result is brilliant, with the top of the rocket called “stuff going into space” and the rocket stage aiming for a drone landing soon nicknamed “part that folds out when the first part is just above the big boat”. We won’t spoil any more for you; click on the infographic below so you can see it in its full glory. We’ve also included the original xkcd cartoon for reference.

Full SpaceX infographic of Falcon 9 called "Bird 9", a parody of the xkcd cartoon "Up Goer Five." Click for full image. Credit: SpaceX/Twitter/Imgur
Full SpaceX infographic of Falcon 9 called “Bird 9”, a parody of the xkcd cartoon “Up Goer Five.” Click for full image. Credit: SpaceX/Twitter/Imgur
xkcd’s “Up Goer Five.” Credit: xkcd

SpaceX Launch and Historic Landing Attempt Reset to Jan. 10

Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

The oft delayed launch of the SpaceX Falcon 9 rocket on the CRS-5 cargo resupply mission for NASA to the International Space Station (ISS) has been reset to Saturday, Jan. 10.

Liftoff is currently targeted for 4:47 a.m. EST Saturday, Jan. 10, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida following a postponement from Friday, Jan. 9.

The launch was unexpectedly scrubbed with one minute, 21 seconds left on the countdown clock for technical reasons earlier this week just prior to the targeted blastoff time of 6:20 a.m. EST on Tuesday, Jan. 6.

A thrust vector control actuator for the Falcon 9’s second stage failed to perform as expected, resulting in a launch abort, said NASA.

NASA and SpaceX decided to take another day to fully evaluate the issue and ensure a launch success.

The launch will be the first Falcon 9 liftoff for 2015.

The overnight launch should put on a spectacular sky show for spectators along the Florida space coast.

There is only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force a scrub until at least Tuesday, Jan. 13.

SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing.  Credit: Elon Musk/SpaceX
SpaceX drone ship sailing at sea to hold position awaiting Falcon 9 rocket landing. Credit: Elon Musk/SpaceX

Overall, CRS-5 is the company’s fifth commercial resupply services mission to the International Space Station.

In additional to being a critical cargo mission required to keep the space station stocked with provisions for the crew and research experiments, the mission features a history making attempt to recover the first stage of the Falcon 9 rocket.

The rocket recovery and landing attempt is a key step towards carrying out SpaceX CEO Elon Musk’s bold vision of rocket reusability.

Towards that end, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the precision landing of his firm’s Falcon 9 rocket after it concludes its launch phase to the ISS.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, Jan. 3, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

However, the absolute overriding goal of the mission is to safely deliver NASA’s contracted cargo to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing on Jan. 5 at the Kennedy Space Center.

Landing on the off-shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5.   Science experiments from these students representing 18 school communities across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5.  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops – Experiments Will Refly on SpaceX CRS 5. Science experiments from these students, representing 18 school communities across America, were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares’ launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

Also loaded onboard are 17 student experiments known collectively as the “Yankee Clipper” mission. The experiments are sponsored by the National Center for Earth and Space Science Education which oversees the Student Spaceflight Experiments Program (SSEP) in partnership with NanoRacks LLC.

They had been selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS, but were all lost when the rocket exploded unexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014.

The experiments have been reconstituted to fly on the CRS-5 mission.

The US supply train to the ISS is now wholly dependent on SpaceX until Cygnus flights are resumed hopefully by late 2015 on an alternate rocket, the Atlas V.

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The weather forecast stands at 80% GO for favorable conditions at launch time.

NASA Television live launch coverage begins at 3:30 a.m. EST on Jan. 10 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014.  Credit: Ken Kremer – kenkremer.com
New countdown clock at NASA’s Kennedy Space Center displays SpaceX Falcon 9 CRS-5 mission and recent Orion ocean recovery at the Press Site viewing area on Dec. 18, 2014. Credit: Ken Kremer – kenkremer.com

Student Scientists Get Second Chance to Fly Experiments to ISS Aboard Falcon 9 After Antares Loss

Student Space Flight teams at NASA Wallops - Will Refly on SpaceX CRS 5. Science experiments from these students representing 18 school communities across America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer - kenkremer.com

Student Space Flight teams at NASA Wallops – Will Refly on SpaceX CRS 5
Science experiments from these students representing 18 school communities across America were selected to fly aboard the Orbital Sciences Cygnus Orb-3 spacecraft bound for the ISS and which were lost when the rocket exploded uexpectedly after launch from NASA Wallops, VA, on Oct. 28, 2014, as part of the Student Spaceflight Experiments Program (SSEP). The students pose here with SSEP program director Dr. Jeff Goldstein prior to Antares launch. The experiments will be re-flown aboard SpaceX CRS-5. Credit: Ken Kremer – kenkremer.com[/caption]

When it comes to science and space exploration, you have to get accustomed to a mix of success and failure.

If you’re wise you learn from failure and turn adversity around into a future success.

Such is the case for the resilient student scientists who learned a hard lesson of life at a young age when the space science experiments they poured their hearts and souls into for the chance of a lifetime to launch research investigations aboard the Antares rocket bound for the International Space Station (ISS) on the Orb-3 mission, incomprehensibly exploded in flames before their eyes on Oct. 28, 2014.

Those student researchers from across America are being given a second chance and will have their reconstituted experiments re-flown on the impending SpaceX CRS-5 mission launch, thanks to the tireless efforts of NASA, NanoRacks, CASIS, SpaceX and the Student Spaceflight Experiments Program (SSEP) which runs the program.

The SpaceX CRS-5 launch to the ISS on the Falcon 9 rocket planned for this morning, Jan. 6, was scrubbed with a minute to go for technical reasons and has been reset to no earlier than Jan. 9.

SSEP Director Dr. Jeff Goldstein shows a NanoRacks Mix-Stix tube used by the student investigations on the NanoRacks/Student Spaceflight Experiments Program -Yankee Clipper mission during presentation at NASA Wallops prior to Oct. 28 Antares launch failure.  17 of 18 experiments will re-fly on SpaceX CRS-5 launch.  Credit: Ken Kremer - kenkremer.com
SSEP Director Dr. Jeff Goldstein shows a NanoRacks Mix-Stix tube used by the student investigations on the NanoRacks/Student Spaceflight Experiments Program -Yankee Clipper mission during presentation at NASA Wallops prior to Oct. 28 Antares launch failure. 17 of 18 experiments will re-fly on SpaceX CRS-5 launch. Credit: Ken Kremer – kenkremer.com

The experiments are known collectively as the ‘Yankee Clipper’ mission.

Antares Orb-3 was destroyed shortly after the exhilarating blastoff from NASA’s Wallops Flight Facility on the Virginia shore.

Everything aboard the Orbital Sciences Antares rocket and ‘the SS Deke Slayton’ Cygnus cargo freighter was lost, including all the NASA supplies and research as well as the student investigations.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

“The student program represents 18 experiments flying as the Yankee Clipper,” said Dr. Jeff Goldstein, in an interview with Universe Today at NASA Wallops prior to the Antares launch. Goldstein is director of the National Center for Earth and Space Science Education, which oversees SSEP in partnership with NanoRacks LLC.

“Altogether 8 communities sent delegations. 41 student researchers were at NASA Wallops for the launch and SSEP media briefing.”

“The 18 experiments flying as the SSEP Yankee Clipper payload reflect the 18 communities participating in Mission 6 to ISS.”

“The communities represent grade 5 to 16 schools from all across America including Washington, DC; Kalamazoo, MI; Berkeley Heights and Ocean City, NJ; Colleton County and North Charleston, SC, and Knox County and Somerville, TN.”

Goldstein explains that within days of the launch failure, efforts were in progress to re-fly the experiments.

“Failure happens in science and what we do in the face of that failure defines who we are,” said Goldstein, “NASA and NanoRacks moved mountains to get us on the next launch, SpaceX CRS-5. We faced an insanely tight turnaround, but all the student teams stepped up to the plate.”

Even the NASA Administrator Charles Bolden lauded the students efforts and perseverance!

“I try to teach students, when I speak to them, not to be afraid of failure. An elementary school student once told me, when I asked for a definition of success, that ‘success is taking failure and turning it inside out.’ It is important that we rebound, learn from these events and try again — and that’s a great lesson for students,” said NASA Administrator Bolden.

“I am delighted that most of the students will get to see their investigations re-flown on the SpaceX mission. Perseverance is a critical skill in science and the space business.”

Virtually all of the experiments have been reconstituted to fly on the CRS-5 mission, also known as SpaceX-5.

“17 of the 18 student experiments lost on Orb-3 on October 28 are re-flying on SpaceX-5. These experiments comprise the reconstituted Student Spaceflight Experiments Program (SSEP) Yankee Clipper II payload for SSEP Mission 6 to ISS,” noted Goldstein.

“This shows the resilience of the federal-private partnership in commercial space, and of the commitment by our next generation of scientists and engineers.”

The wide range of experiments include microgravity investigations on how fluids act and form into crystals in the absence of gravity crystal growth, mosquito larvae development, milk expiration, baby bloodsuckers, development of Chrysanthemum and soybean seeds and Chia plants, effect of yeast cell division and implications for human cancer cells, and an examination of hydroponics.

Student experiments are aboard. Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace
Student experiments are aboard. Bearing the CRS-5 Dragon cargo craft within its nose, the Falcon 9 v1.1 stands patiently to execute the United States’ first mission of 2015. Photo Credit: Mike Killian/AmericaSpace

That dark day in October witnessed by the students, Goldstein, myself as a fellow scientist, and others is something we will never forget. We all chose to learn from the failure and move forward to greater accomplishments.

Don’t surrender to failure. And don’t give in to the ‘Do Nothing – Can’t Do’ crowd so prevalent today.

Remember what President Kennedy said during his address at Rice University on September 12, 1962:

“We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NanoRacks Mix-Stix, which are used by the student investigations on the NanoRacks/National Center for Earth and Space Science Education -Yankee Clipper.   Credit: Credit: Ken Kremer - kenkremer.com
NanoRacks Mix-Stix, which are used by the student investigations on the NanoRacks/National Center for Earth and Space Science Education -Yankee Clipper. Credit: Ken Kremer – kenkremer.com

Last Minute Scrub for SpaceX Dragon Launch; Try Again Friday for Historic 1st Stage Landing

Falcon 9 and Dragon on the launchpad Cape Canaveral Air Force Station in Florida. SpaceX will try again on January 9 to launch and attempt an historic first stage landing on a floating ocean platform. Credit: SpaceX.

An actuator that was “behaving strangely” on the SpaceX Falcon 9’s upper stage caused a last minute scrub for Tuesday’s attempt to launch a Dragon capsule to the International Space Station, as well as the first try at an historic first stage landing on a floating platform in the Atlantic Ocean.


SpaceX will try again on Friday, January 9, 2014 at 5:09 a.m. EST. Like today’s attempt, there will be only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force further delays.

This is the commercial space company’s fifth resupply mission to the ISS and the unmanned cargo freighter is loaded with more than 5,108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The “experiment” that has attracted the most attention, however, is the attempt to land the first stage of the two-stage rocket on a floating platform in the Atlantic Ocean, approximately 320 km (200 miles) off the coast of Florida.

This is the first attempt at such a landing. SpaceX has conducted numerous successful soft landing tests on land, and done several touchdowns on the ocean’s surface.

Elon Musk has estimated the odds of success at the landing attempt at about 50% at best.

“It’s an experiment,” said Hans Koenigsmann, VP of Mission Assurance at SpaceX, speaking at a media briefing on Jan. 5 at the Kennedy Space Center. “There’s a certain likelihood that this will not work out right, that something will go wrong.” He also added that the landing on the off shore barge is just a secondary objective of SpaceX, not NASA.

Many analysts say a successful landing maneuver would mark a significant step toward making rockets more reusable, which would help cut costs. But others caution that even if this first attempt is successful, we shouldn’t expect to see regular airline-like reuse and large cost drops anytime soon.