Faulty Support Strut Likely Caused SpaceX Falcon 9 Rocket Failure: Elon Musk

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

The in-flight failure of a critical support strut inside the second stage liquid oxygen tank holding a high pressure helium tank in the Falcon 9 rocket, is the likely cause of the failed SpaceX launch three weeks ago on June 28, revealed SpaceX CEO and chief designer Elon Musk during a briefing for reporters held today, July 20, to explain why the critical cargo delivery run for NASA to the space station suddenly turned into a total disaster after a promising start.

The commercial booster and its cargo Dragon payload were unexpectedly destroyed by an overpressure event 139 seconds after a picture perfect blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on June 28 at 10:21 a.m. EDT.

Musk emphasized that the failure analysis is still “preliminary” and an “initial assessment” based on the investigation thus far. SpaceX has led the investigation efforts under the oversight of the FAA with participation from prime customers NASA and the U.S. Air Force.

The root cause appears to be that the second stage strut holding the high pressure helium tank inside the 2nd stage broke at a bolt – far below its design specification and thereby allowing the tank to break free and swing away.

“The strut that we believe failed was designed and certified to handle 10,000 lbs of force, but failed at 2,000 lbs, a five-fold difference,” Musk explained.

“During acceleration of the rocket to 3.2 G’s, the strut holding down the helium tank failed. Helium was released, causing the over pressurization event.”

To date no other issues have been identified as possible failure modes, Musk elaborated.

The helium tanks are pressurized to 5500 psi and were breached during the over pressurization. The purpose of the helium tanks is to pressurize the first and second stage propellant tanks.

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

“We tested several hundred struts. On the outside they looked normal. But inside there was a problem,” Musk explained

“Detailed close-out photos of stage construction show no visible flaws or damage of any kind,” according to a SpaceX statement.

The struts are produced by an outside vendor that Musk would not identify. He added that in the future, SpaceX will likely choose a different vendor to manufacture the struts.

He said the struts were made from a type of stainless steel and would also likely be redesigned.

“The material of construction will be changed to Inconel,” Musk told me in response to a question.

Hundreds of the original type struts have been used to date on the first and second stages of the Falcon 9 with no issues. In the future, they will also be independently certified for use, by an outside contractor instead of the vendor.

The nine first stage Merlin 1D engines of the Falcon 9 were still firing nominally during the start of the mishap, said Musk. The first stage had nearly completed its planned firing duration when the explosion took place.

“The event happened very quickly, within 0.893 seconds,” Musk stated, from the first indication of an issue to loss of all telemetry.

“Preliminary analysis suggests the overpressure event in the upper stage liquid oxygen tank was initiated by a flawed piece of support hardware (a “strut”) inside the second stage,” noted SpaceX in a statement.

Video caption: Launch video of the CRS-7 launch on June 28, 2015 from a remote camera placed at Launch Complex 40. The launch would fail around two minutes later. Credit: Alex Polimeni/Spaceflight Now

The blastoff of the Dragon CRS-7 cargo mission for NASA was the first failure of the SpaceX Falcon 9 rocket after 18 straight successes and the firms first launch mishap since the failure of a Falcon 1 in 2008.

The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

Umbilicals away and detaching from SpaceX Falcon 9 launch  from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter.  Credit: Ken Kremer/kenkremer.com
Umbilicals away and detaching from SpaceX Falcon 9 launch from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter. Credit: Ken Kremer/kenkremer.com

The Dragon cargo freighter survived the explosion but was destroyed when it impacted the Atlantic Ocean.

“But the Dragon might have been saved if the parachutes had been deployed,” said Musk.

Unfortunately the software required to deploy the parachute was not loaded onboard.

“The new software required to deploy the parachutes will be included on all future Dragons, V1 and V2,” said Musk, referring to the cargo and crew versions of the SpaceX Dragon spaceship.

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

The NASA cargo was valued at about $110 million. The launch itself was not insured.

The investigation board is reviewing data from over 3,000 telemetry channels as well as video and physical debris, he noted.

The next launch of a Falcon 9 will be postponed at least a few months until “no earlier than September” Musk indicated.

Two Falcon 9 launches had been set for August from Vandenberg AFB and Cape Canaveral. And the next launch to the ISS had been slated for September on the Dragon CRS-8 mission.

Musk said the next payload to be launched aboard a Falcon 9 has yet to be determined.

Starting in 2017, the Falcon 9 will launch astronauts to the ISS aboard the Crew Dragon.

Overall CRS-7 was the seventh SpaceX commercial resupply services mission and the eighth trip by a Dragon spacecraft to the station since 2012.

CRS-7 marked the company’s seventh operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

………….

Learn more about SpaceX, ULA, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

July 21/22: “SpaceX, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings/afternoon for July 22 Delta IV launch of USAF WGS-7 satellite

NASA Names Four Astronauts for First Boeing, SpaceX U.S. Commercial Spaceflights

NASA has selected experienced astronauts Robert Behnken, Eric Boe, Douglas Hurley and Sunita Williams to work closely with The Boeing Company and SpaceX to develop their crew transportation systems and provide crew transportation services to and from the International Space Station. Credits: NASA

NASA today (July 9) named the first four astronauts who will fly on the first U.S. commercial spaceflights in private crew transportation vehicles being built by Boeing and SpaceX – marking a major milestone towards restoring American human launches to U.S. soil as soon as mid-2017, if all goes well.

The four astronauts chosen are all veterans of flights on NASA’s Space Shuttles and to the International Space Station (ISS); Robert Behnken, Eric Boe, Douglas Hurley and Sunita Williams. They now form the core of NASA’s commercial crew astronaut corps eligible for the maiden test flights on board the Boeing CST-100 and Crew Dragon astronaut capsules.

Behnken, Boe and Hurley have each launched on two shuttle missions and Williams is a veteran of two long-duration flights aboard the ISS after launching on both the shuttle and Soyuz. All four served as military test pilots prior to being selected as NASA astronauts.

The experienced quartet of space flyers will work closely with Boeing and SpaceX as they begin training and prepare to launch aboard the first ever commercial ‘space taxi’ ferry flight missions to the ISS and back – that will also end our sole source reliance on the Russian Soyuz capsule for crewed missions to low-Earth orbit and further serve to open up space exploration and transportation services to the private sector.

Boeing and SpaceX were awarded contracts by NASA Administrator Charles Bolden in September 2014 worth $6.8 Billion to complete the development and manufacture of the privately developed CST-100 and Crew Dragon astronaut transporters under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

“I am pleased to announce four American space pioneers have been selected to be the first astronauts to train to fly to space on commercial crew vehicles, all part of our ambitious plan to return space launches to U.S. soil, create good-paying American jobs and advance our goal of sending humans farther into the solar system than ever before,” said NASA Administrator Charles Bolden, in a statement.

“These distinguished, veteran astronauts are blazing a new trail — a trail that will one day land them in the history books and Americans on the surface of Mars.”

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

The selection of astronauts for rides with NASA’s Commercial Crew Program (CCP) comes almost exactly four years to the day since the last American manned space launch of Space Shuttle Atlantis on the STS-135 mission to the space station on July 8, 2011 from the Kennedy Space Center in Florida.

Hurley was a member of the STS-135 crew and served as shuttle pilot under NASA’s last shuttle commander, Chris Ferguson, who is now Director of Boeing’s CST-100 commercial crew program. Read my earlier exclusive interviews with Ferguson about the CST-100 – here and here.

Since the retirement of the shuttle orbiters, all American and ISS partner astronauts have been forced to hitch a ride on the Soyuz for flights to the ISS and back, at a current cost of over $70 million per seat.

“Our plans to return launches to American soil make fiscal sense,” Bolden elaborated. “It currently costs $76 million per astronaut to fly on a Russian spacecraft. On an American-owned spacecraft, the average cost will be $58 million per astronaut.

Behnken, Boe, Hurley and Williams are all eager to work with the Boeing and SpaceX teams to “understand their designs and operations as they finalize their Boeing CST-100 and SpaceX Crew Dragon spacecraft and operational strategies in support of their crewed flight tests and certification activities as part of their contracts with NASA.”

Until June 2015, Williams held the record for longest time in space by a woman, accumulating 322 days in orbit. Behnken is currently the chief of the astronaut core and conducted six space walks at the station. Boe has spent over 28 days in space and flew on the final mission of Space Shuttle Discovery in Feb. 2011 on STS-133.

The first commercial crew flights under the CCtCAP contract could take place in 2017 with at least one member of the two person crews being a NASA astronaut – who will be “on board to verify the fully-integrated rocket and spacecraft system can launch, maneuver in orbit, and dock to the space station, as well as validate all systems perform as expected, and land safely,” according to a NASA statement.

The second crew member could be a company test pilot as the details remain to be worked out.

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA
Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA

The actual launch date depends on the NASA budget allocation for the Commercial Crew Program approved by the US Congress.

Congress has never approved NASA’s full funding request for the CCP program and has again cut the program significantly in initial votes this year. So the outlook for a 2017 launch is very uncertain.

Were it not for the drastic CCP cuts we would be launching astronauts this year on the space taxis.

“Every dollar we invest in commercial crew is a dollar we invest in ourselves, rather than in the Russian economy,” Bolden emphasizes about the multifaceted benefits of the commercial crew initiative.

Under the CCtCAP contract, NASA recently ordered the agency’s first commercial crew mission from Boeing – as outlined in my story here. SpaceX will receive a similar CCtCAP mission order later this year.

At a later date, NASA will decide whether Boeing or SpaceX will launch the actual first commercial crew test flight mission to low Earth orbit.

Boeing’s commercial CST-100 'Space Taxi' will carry a crew of five astronauts to low Earth orbit and the ISS from US soil.   Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida.  Credit: Ken Kremer - kenkremer.com
Boeing’s commercial CST-100 ‘Space Taxi’ will carry a crew of five astronauts to low Earth orbit and the ISS from US soil. Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com

“This is a new and exciting era in the history of U.S. human spaceflight,” said Brian Kelly, director of Flight Operations at NASA’s Johnson Space Center in Houston, in a statement.

“These four individuals, like so many at NASA and the Flight Operations Directorate, have dedicated their careers to becoming experts in the field of aeronautics and furthering human space exploration. The selection of these experienced astronauts who are eligible to fly aboard the test flights for the next generation of U.S. spacecraft to the ISS and low-Earth orbit ensures that the crews will be well-prepared and thoroughly trained for their missions.”

Both the CST-100 and Crew Dragon will typically carry a crew of four NASA or NASA-sponsored crew members, along with some 220 pounds of pressurized cargo. Each will also be capable of carrying up to seven crew members depending on how the capsule is configured.

The spacecraft will be capable to remaining docked at the station for up to 210 days and serve as an emergency lifeboat during that time.

The NASA CCtCAP contracts call for a minimum of two and a maximum potential of six missions from each provider.

The station crew will also be enlarged to seven people that will enable a doubling of research time.
The CST-100 will be carried to low Earth orbit atop a man-rated United Launch Alliance Atlas V rocket launching from Cape Canaveral Air Force Station, Florida. It enjoys a 100% success rate.

Boeing will first conduct a pair of unmanned and manned orbital CST-100 test flights earlier in 2017 in April and July, prior to the operational commercial crew rotation mission to confirm that their capsule is ready and able and met all certification milestone requirements set by NASA.

The Crew Dragon will launch atop a SpaceX Falcon 9 rocket. It enjoyed a 100% success rate until last weeks launch on its 19th flight which ended with an explosion two minutes after liftoff from Cape Canaveral on June 28, 2015.

Umbilicals away and detaching from SpaceX Falcon 9 launch  from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter.  Credit: Ken Kremer/kenkremer.com
Umbilicals away and detaching from SpaceX Falcon 9 launch from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter. Credit: Ken Kremer/kenkremer.com

SpaceX conducted a successful Pad Abort Test of the Crew Dragon on May 6, as I reported here. The goal was to test the spacecrafts abort systems that will save astronauts lives in a split second in the case of a launch emergency such as occurred during the June 28 rocket failure in flight that was bound for the ISS with the initial cargo version of the SpaceX Dragon.

SpaceX plans an unmanned orbital test flight of Crew Dragon perhaps by the end of 2016. The crewed orbital test flight would follow sometime in 2017.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Falcon 9 Rocket Failure a Huge Blow to SpaceX: Musk

SpaceX CEO ElonMusk and NASA’s ISS Manager Mike Suffredini discuss ISS research and the June 28, 2015 Falcon 9 launch disaster at the International Space Station Research & Development Conference being held in Boston, Mass, on July 7. Credit: NASA

In his first public comments since the surprise disintegration of the commercial SpaceX Falcon 9 rocket some two minutes after last week’s liftoff on June 28, SpaceX CEO Elon Musk said today (July 7) that the launch failure was a “huge blow” to his company and the cause remains elusive and is under intense investigation.

“The accident was a huge blow to SpaceX,” Musk told the opening session of the International Space Station Research & Development Conference being held in Boston, Mass, during an on-stage conversation with NASA’s International Space Station manager Mike Suffredini.

The private SpaceX Falcon 9 booster broke up just minutes after a picture perfect blastoff from Cape Canaveral on a crucial logistics flight for NASA, carrying a SpaceX Dragon cargo freighter that was headed to the International Space Station (ISS).

Dragon was chock full of over two tons of research experiments and much needed supplies and gear for the multinational crews serving aboard.

“There’s still no clear theory that fits with all the data,” Musk said. “We take these missions incredibly seriously.”

The cargo ships function as a railroad to space and the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles the ISS cannot operate.

The SpaceX Falcon 9 and Dragon were destroyed just over two minutes after a stunning liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in sunny Florida at 10:21 a.m. EDT.

The upper stage of the rocket suddenly exploded due to an as yet unexplained anomaly as the nine first stage Merlin 1D engines kept firing. Moments later it vaporized into a grayish cloud at supersonic speed, raining debris down into the Atlantic Ocean.

Although the second stage appears to be the culprit in the disaster, Musk said that there is still not a coherent cause and explanation of the data and was hard to interpret.

“Whatever happened is clearly not a sort of simple, straightforward thing,” he explained. “In this case, the data does seem to be quite difficult to interpret.”

“So we want to spend as much time as possible just reviewing the data. No clear theory fits all the data.”

The Falcon 9 was transmitting data on over 3,000 channels of flight data streams.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

Virtually since the moment of the mishap approximately 139 seconds after the otherwise successful launch, SpaceX engineers have been pouring over the data to try and determine the root cause of the accident.

“Everyone that can engage in the investigation at SpaceX is very, very focused on that,”Musk elaborated. “We want to spend as much time as possible just reviewing the data.”

From the beginning Musk indicated that there was some type of over pressure event in the upper stage liquid oxygen tank and he elaborated a bit at the conference.

“At this point, the only thing that’s really clear was there was some kind of over-pressure event in the upper stage liquid oxygen tank, but the exact cause and sequence of events, there’s still no clear theory that fits with all the data.”

“So we have to determine if some of the data is a measurement error of some kind, or if there’s actually a theory that matches what appear to be conflicting data points.”

SpaceX is conducting an intense and thorough investigation with the active support of various government agencies including the FAA, NASA and the U.S. Air Force.

“The interaction with NASA has been great so far,” Musk said. “The biggest challenge is that there are a lot of inquiries coming in simultaneously, so it’s hard to keep responding to everyone right away.”

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

The accident investigation is in full swing both at the Cape and SpaceX headquarters in Hawthorne, Ca.

Hans Koenigsmann, SpaceX VP of Mission Assurance, is leading the accident investigation for SpaceX.

“The process for determining the root cause of Sunday’s mishap is complex, and there is no one theory yet that is consistent with the data,” SpaceX spokesman John Taylor told me earlier.

“Our engineering teams are heads down reviewing every available piece of flight data as we work through a thorough fault tree analysis in order to identify root cause.”

Umbilicals away and detaching from SpaceX Falcon 9 launch  from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter.  Credit: Ken Kremer/kenkremer.com
Umbilicals away and detaching from SpaceX Falcon 9 launch from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter. Credit: Ken Kremer/kenkremer.com

The June 28 launch was the 19th overall for the Falcon 9 booster and the first failure in an otherwise hugely successful program by the new space company founded by Musk and headquartered in Hawthorne, CA. Musk’s oft stated goals include radically slashing the cost of access to space to enable much wider participation in the space frontier by entrepreneurs and individuals and foster much greater exploration that will aid human missions to the Red Planet.

SpaceX may have more to say publicly later this week.

“I think we’ll be able to say something more definitive towards the end of the week,” Musk noted.

In the meantime all SpaceX launches are on hold for several months at least.

The SpaceX CRS-7 cargo launch failure was the second of two back to back cargo delivery launch failures run to the space station, including both American and Russian rockets since April, and the third in the past eight months that significantly crimped the stations stockpiles and abruptly impacted upcoming crew rotations and launches throughout the remainder of 2015.

Fortunately, the string of launch failures with the successful launch the Russian Progress 60 cargo freighter on July 3, five days after the SpaceX CRS-7 failure. Progress 60 docked at the ISS on July 5 with three tons of supplies, to the relief of the station partners worldwide.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Mike Suffredini,  NASA International Space Station manager and Hans Koenigsmann, SpaceX VP of Mission Assurance discuss Space CRS-7 mission to the ISS at media briefing at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com
Mike Suffredini, NASA International Space Station manager and Hans Koenigsmann, SpaceX VP of Mission Assurance discuss SpaceX CRS-7 mission to the ISS at media briefing at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Russian Progress Supply Freighter Docks at Space Station, Ending String of International Launch Failures

The ISS Progress M-28 (Progress 60) cargo craft is seen just a few minutes away from successful docking to the International Space Station on July 5, 2015. Credit: Roscosmos

Over three tons of much needed supplies and equipment finally reached the crew living aboard the International Space Station (ISS), when an unmanned and highly anticipated Russian Progress cargo ship successfully docked at the orbiting outpost early this morning, Sunday July 5, at 3:11 a.m. EDT (10:11 MSK, Moscow local time)- to all the partners relief.

This follows two straight international resupply launch failures that significantly crimped the stations stockpiles and abruptly impacted upcoming crew rotations and station launches throughout the remainder of 2015.

Today’s arrival of Russia’s Progress 60 (Progress M-28M) logistics vehicle ended a string of Russian and American resupply mission failures that began some two months ago with the devastating Soyuz rocket launch failure of the prior Progress 59 ship on April 28, and continued with the mid-air explosion of a commercial SpaceX Falcon 9 and unpiloted SpaceX Dragon CRS-7 cargo ship exactly one week ago on June 28.

The Progress 60 was automatically docked at an earth facing port on the Russian “Pirs” docking module on the Russian segment of the ISS – that finally puts the station on the road to recovery with a stockpile of 6100 pounds (2770 kg) of new fuel, food, oxygen, research experiments and gear.

“The operation was carried out in an automated mode,” according to Russian Mission Control near Moscow.

The docking operation was conducted under the guidance of the Russian ISS Expedition 44 commander Gennady Padalka and flight engineer Mikhail Kornienko as well as experts at the Russian Mission Control Center, as the vehicles were soaring about 251 miles (400 km) over the south Pacific, southeast of New Zealand. NASA astronaut Scott Kelly is also aboard, rounding out the current three man crew.

The ISS Progress 60 cargo craft is seen just a few minutes away from docking to the International Space Station. Credit: NASA TV
The ISS Progress 60 cargo craft is seen just a few minutes away from docking to the International Space Station. Credit: NASA TV

The successful docking came two days after the blastoff of the unmanned Progress 60 cargo freighter atop a Soyuz-U booster from the Baikonur Cosmodrome on July 3. This signifies the restoration of Russia’s critical cargo lifeline to the ISS and was like celebrating Christmas in July.

“Guys, congratulations. your cargo vehicle has arrived,” said Russian flight director Vladimir Solovyev from Russian mission control.

“We congratulate you as well,” cosmonaut Gennady Padalka replied from inside the station’s Russian-built Zvezda command module. “Thanks so much for sending it our way. It feels like Christmas in July.”

The station is totally dependent on a regular train of supply runs from the partner nations on Earth to operate with a crew and conduct research investigations that will aid in sending humans to deep space destinations.

The ISS Progress 60 cargo craft is now docked to the Pirs docking compartment. Credit: NASA TV
The ISS Progress 60 cargo craft is now docked to the Pirs docking compartment shown in this schematic. Credit: NASA TV

America’s cargo lifeline is currently on hold following the dual launch failures of both US commercial supply trains to low Earth orbit- involving the SpaceX Falcon 9 last week and the catastrophic Orbital ATK Antares/Cygnus Orb-3 mission launch disaster on October 28, 2014 which I saw at NASA Wallops.

The SpaceX Falcon 9 and Dragon exploded barely two minutes after liftoff from Cape Canaveral. The rocket disintegrated in mere moments as I watched from the roof of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.

All told, an unprecedented trio of launch failures with three different American and Russian rockets took place over the past eight months.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

Progress 60 resupply ship was loaded with over three tons of food, fuel, oxygen, science experiments, water and supplies on a crucial mission for the International Space Station crew to keep them stocked with urgently needed life support provisions and science experiments in the wake of the twin launch failures in April and June.

The ISS Progress M-28M (Progress 60) cargo craft is seen just a few minutes away from successful docking to the International Space Station. Credit: Roscosmos
The ISS Progress M-28M (Progress 60) cargo craft is seen just a few minutes away from successful docking to the International Space Station. Credit: Roscosmos
The ship delivered approximately 1,146 pounds (520 kg) of propellant, 105 pounds (48 kg) of oxygen, 926 pounds (420 kg) of water and 3,071 pounds (1393 kg) pounds of crew supplies, provisions, research equipment, science experiments, student experiments, tools and spare parts and parcels for the crew.

The Progress was stuffed with 100 kg of additional food stocks to make up for the losses suffered from the twin Russian Progress 59 and SpaceX CRS-7 failures.

“As for food, 430 kilos of foodstuffs will be delivered to the ISS or 100 kilos more than the amount delivered by the previous spacecraft,” noted Mission Control.

“The Progress space freighter will deliver more food than usual so that it will suffice for everyone,” Alexander Agureyev, chief of the ISS crew nourishment department at the Institute of Medical and Biological Problems, told the Russian news agency TASS.

Progress 60 is scheduled to remain docked to Pirs for the next four months.

In the wake of the trio of American and Russian launch failures, the crew currently enjoys only about four months of reserves compared to the more desirable six months stockpile in case of launch mishaps.

Progress 60 will extend the station supplies by about a month’s time.

The next cargo ship now slated to launch is the Japanese HTV-5 on August 16.

Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos

The SpaceX CRS-7 Dragon was packed with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko.

The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis being built by Boeing and SpaceX to dock at the ISS starting in 2017.

The next crewed launch to the station is set for July 22 aboard a Soyuz capsule with with an international trio comprising NASA astronaut Kjell Lindgren, Oleg Kononenko of the Russian Federal Space Agency and Kimiya Yui of the Japan Aerospace Exploration Agency. Their flight was delayed from May 26 after the Progress 59 launch failure to ensure that there are no issues with the Soyuz rocket booster that will boost them to the ISS.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Russian Progress Launch Restores Critical Cargo Lifeline to Space Station

Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos

Blastoff of the Russian Progress 60 resupply ship to the ISS from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
Story updated[/caption]

A sigh of relief was heard worldwide with today’s (July 3) successful launch to orbit of the unmanned Progress 60 cargo freighter atop a Soyuz-U booster from the Baikonur Cosmodrome, signifying the restoration of Russia’s critical cargo lifeline to the International Space Station (ISS), some two months after the devastating launch failure of the prior Progress 59 spaceship on April 28.

Friday’s triumphant Progress launch also comes just five days after America’s cargo deliveries to the ISS were put on hold following the spectacular failure of a commercial SpaceX Falcon 9 rocket launched from the Florida Space Coast on Sunday, June 28, carrying the unpiloted SpaceX Dragon CRS-7 which broke up in flight.

The Progress 60 resupply ship, also known as Progress M-28M, was loaded with over three tons of food, fuel, oxygen, science experiments, water and supplies on a crucial mission for the International Space Station crew to keep them stocked with urgently needed life support provisions and science experiments in the wake of the twin launch failures in April and June.

The Soyuz-U carrier rocket launched Progress into blue skies at 10:55 a.m. local time in Baikonur (12:55 a.m. EDT) from the Baikonur Cosmodrome in Kazakhstan. The launch was webcast live on NASA TV.

“Everything went by the book,” said NASA commentator Rob Navias during the webcast. “Everything is nominal.”

The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos
The ISS Progress 60 resupply ship streak to orbit after on time launch from the Baikonur Cosmodrome on July 3, 2015. Credit: Roscosmos

The International Space Station was flying about 249 miles over northwestern Sudan, near the border with Egypt and Libya, at the moment of liftoff. Note: See an exquisite photo of the Egyptian pyramid photographed from the ISS in my recent story – here.

After successfully separating from the third stage Progress reach its preliminary orbit less than 10 minutes after launch from Baikonur and deployed its solar arrays and navigational antennas as planned.

Live video was received from Progress after achieving orbit showing a beautiful view of the Earth below.

A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV
A camera from the Progress spacecraft shows the Earth below as it begins its two day trip to the space station. Credit: NASA TV

A two day chase of 34 orbits of Earth over the next two days will bring the cargo craft to the vicinity of the station for a planned docking to the Russian segment of the orbiting laboratory at 3:13 a.m. Sunday, July 5.

NASA TV will provide live coverage of the arrival and docking operation to the Pirs Docking Compartment starting at 2:30 a.m. EDT on Sunday, July 5.

Watch live on NASA TV and online at http://www.nasa.gov/nasatv

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka are currently living and working aboard the station as the initial trio of Expedition 44 following the safe departure and landing of the three person Expedition 43 crew in mid June.

Kelly and Kornienko comprise the first ever 1 Year Crew to serve aboard the ISS and are about three months into their stay in space.

In the span of just the past eight months, three launches of unmanned cargo delivery runs to the space station have failed involving both American and Russian rockets.

The cargo ships function as a railroad to space and function as the lifeline to keep the station continuously crewed and functioning. Without periodic resupply by visiting vehicles from the partner nations the ISS cannot continue to operate.

The Orbital Sciences Antares/Cygnus Orb 3 mission exploded in a massive and frightening fireball on October 28, 2014 which I witnessed from the press site from NASA Wallops in Virginia.

The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the Soyuz booster rockets third stage and spun wildly out of control on April 28, 2015 and eventually crashed weeks later during an uncontrolled plummet back to Earth over the ocean on May 8. The loss was traced to an abnormal third stage separation event.

Roscosmos, the Russian Federal Space Agency, switched this Progress vehicle to an older version of the Soyuz rocket which had a different third stage configuration that was not involved in the April failure.

The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV
The ISS Progress 60 resupply ship launches on time from the Baikonur Cosmodrome. Credit: NASA TV

Russian officials decided to move up the launch by about a month from its originally planned launch date in August in order to restock the station crew with critically needed supplies as soon as practical.

Following Sundays SpaceX cargo launch failure, the over 6100 pounds of new supplies on Progress are urgently needed more than ever before. Loaded aboard are 1,146 pounds (520 kg) of propellant, 105 pounds (48 kg) of oxygen, 926 pounds (420 kg) of water and 3,071 pounds (1393 kg) pounds of crew supplies, provisions, research equipment, science experiments, tools and spare parts and parcels for the crew.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

In the wake of the trio of American and Russian launch failures, the crews current enjoy only about four month of supplies reserves compared to the more desirable six months stockpile in case of launch mishaps.

Progress 60 will extend the station supplies by about a month’s time.

The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Kelly and Kornienko.

The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.

The three cargo launch failures so close together are unprecedented in the history of the ISS program over the past two decades.

The next cargo ship now slated to launch is the Japanese HTV-5 on August 16.

Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares descended into hellish inferno after first stage propulsion system at base of Orbital Sciences Antares rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Falcon 9 Failure Investigation Focuses on Data not Debris as SpaceX Seeks Root Cause

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – SpaceX and NASA are diligently working to “identify the root cause” of the June 28 in flight failure of the firms Falcon 9 rocket, as the accident investigation team focuses on “flight data” rather than recovered debris as the best avenue for determining exactly what went wrong, a SpaceX spokesperson told Universe Today.

The SpaceX Falcon 9 booster broke up just minutes after a picture perfect blastoff from a seaside Florida launch pad on a critical mission for NASA bound for the International Space Station (ISS). It was carrying a SpaceX Dragon cargo freighter loaded with research equipment and new hardware to enable crewed spaceships to dock at the orbiting outpost.

The accident investigation team is still seeking the root cause of the launch failure through a complex fault tree analysis.

“The process for determining the root cause of Sunday’s mishap is complex, and there is no one theory yet that is consistent with the data,” said SpaceX spokesman John Taylor.

The accident investigation is in full swing both at the Cape and SpaceX headquarters in Hawthorne, Ca.

“Our engineering teams are heads down reviewing every available piece of flight data as we work through a thorough fault tree analysis in order to identify root cause.”

Hans Koenigsmann, SpaceX VP of Mission Assurance, is leading the accident investigation for SpaceX.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

SpaceX is conducting an intense and thorough investigation with the active support of various government agencies including the FAA, NASA and the U.S. Air Force.

The SpaceX Falcon 9 and Dragon were destroyed just over two minutes after a stunning liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in sunny Florida at 10:21 a.m. EDT.

The SpaceX CRS-7 cargo resupply mission to the ISS began flawlessly. The nine Merlin 1D engines powering the Falcon 9 rockets first stage were firing nominally at launch to produce about 1.3 million pounds of liftoff thrust for almost their entire duration.

However, approximately 139 seconds into the planned 159 second firing of the first stage engine, the majestic blastoff went awry as the upper stage of the vehicle experienced an as yet unexplained anomaly and suddenly exploded, vaporizing into a grayish cloud at supersonic speed and raining debris down into the Atlantic Ocean.

SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Alex Polimeni
SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Alex Polimeni

The Falcon 9 has transmitting data on over 3,000 channels of flight data streams.

But something went wrong apparently with the upper stage said SpaceX CEO Elon Musk.

“There was an overpressure event in the upper stage liquid oxygen tank. Data suggests counterintuitive cause,” tweeted Musk.

But why that happened and the vehicle disintegrated in mere seconds is still a mystery to be resolved through careful fault tree analysis of the data.

“Cause still unknown after several thousand engineering-hours of review. Now parsing data with a hex editor to recover final milliseconds.”

While SpaceX and Coast Guard ships have recovered some debris in the days since the launch mishap, the data streams are expected to be the most useful source of information to the investigation team.

Hex editors are being used to comb through the data.

A hex editor (or binary file editor or byte editor) is a type of computer program that allows for manipulation of the fundamental binary data that constitutes a computer file.

The name ‘hex’ comes from ‘hexadecimal’: a standard numerical format for representing binary data.

Some data was transmitted after the breakup.

The accident investigation teams are currently in the process of recreating the final milliseconds of the flight to give them some additional insights into what may have happened, when and why.

View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

In the meantime all SpaceX launches are on hold for several months at least.

The next Falcon 9 launch scheduled was for NASA’s Jason 3 from Vandenberg Air Dorce Base in California

The next SpaceX cargo Dragon had been scheduled for liftoff in September 2015 on the CRS-8 mission, but is now postponed pending the results of the return to flight investigation.

Umbilicals away and detaching from SpaceX Falcon 9 launch  from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter.  Credit: Ken Kremer/kenkremer.com
Umbilicals away and detaching from SpaceX Falcon 9 launch from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter. Credit: Ken Kremer/kenkremer.com

There are sufficient supplies on board the ISS to keep the crew continuing their mission until at least October 2015.

The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Scott Kelly and Mikhail Kornienko.

The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.

Another Russian Progress vehicle is set to fly on the next resupply mission from the Baikonur Cosmodrome on Friday, July 3.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Julian Leek
SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Julian Leek
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Cause of SpaceX Falcon 9 Rocket Failure Unknown; Launch Explosion Photos

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
Story and photos expanded[/caption]

KENNEDY SPACE CENTER, FL – The root cause of Sundays (June 28) devastating launch failure of the commercial SpaceX Falcon 9 rocket is “still unknown” says SpaceX CEO and founder Elon Musk, following the loss of the NASA contracted resupply mission carrying crucial gear and research experiments to the crew serving aboard the Earth orbiting International Space Station (ISS).

Meanwhile, search and recovery teams from SpaceX and the Coast Guard are scouring the ocean and beaches along the Florida Space Coast for any signs of potentially dangerous Falcon rocket debris that rained down from the sky into the Atlantic Ocean after the sudden explosion unexpectedly destroyed the vehicle barely two minutes after a sun drenched liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT.

All appeared normal as the Falcon 9 booster and Dragon resupply spaceship were streaking skywards through majestically blue Florida skies when catastrophe struck at approximately 148 seconds after blastoff and the rocket exploded violently- utterly destroying the rocket ship and its two ton load of critical supplies heading to the astronauts and cosmonauts living on board the ISS.

The upper stage appeared to break up in flight as the nine first stage Merlin 1D engines were firing as planned and the rocket was arcing over.

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

But why that happened and the vehicle disintegrated in mere seconds is still a mystery which will take some time to resolve.

“Cause still unknown after several thousand engineering-hours of review. Now parsing data with a hex editor to recover final milliseconds,” tweeted SpaceX CEO Elon Musk.

Although the cause is unknown, Musk also announced that the failure might be related to a problem with the Falcon 9 upper stage. since the first stage engines were still firing as planned.

“There was an overpressure event in the upper stage liquid oxygen tank. Data suggests counterintuitive cause,” tweeted Musk.

SpaceX Falcon 9 rocket and Dragon resupply spaceship streaking skywards until explosion about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship streaking skywards until explosion about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

The rocket was traveling about 5000 km/h at an altitude of 45 kilometers at the time of the mishap.

“Falcon 9 experienced a problem shortly before first stage shutdown. Will provide more info as soon as we review the data,” tweeted SpaceX CEO Elon Musk soon after the explosion.

The pressurized section of the Dragon was packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45 on the ISS.

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Sunday’s launch was the 19th launch of the Falcon 9 rocket and the first failure after 18 straight successes.

SpaceX formed a failure investigation board immediately following the launch failure of the SpaceX Commercial Resupply Services 7 (CRS-7) mission bound for the ISS. The FAA and NASA will assist in the investigation.

The launch was the sixth for SpaceX this year, which had been picking up its launch pace dramatically compared to 2014.

SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral Air Force Station, Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

It was the third launch failure of a cargo delivery run to the space station in the past half year -including both American and Russian rockets.

The Orbital Sciences Antares/Cygnus Orb 3 mission exploded in a massive an frightening fireball on October 28, 2014 which I witnessed from the press site from NASA Wallops in Virginia.

The Russian Soyuz/Progress 59 mission failed after the cargo vessel separated from the booster rockets third stage and spun wildly out of control in April 2015 and eventually crashed.

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Myself and other members of the media were watching and photographing the SpaceX Falcon 9 launch from atop the iconic Vehicle Assembly Building (VAB) when the launch mishap occurred.

See a galley of my launch failure explosion photos herein.

SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
First stage propulsion system at base of Orbital Sciences Antares rocket appears to explode moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Dragon Destroyed in Catastrophic Explosion Soon After Florida Blastoff

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – A SpaceX Falcon 9 rocket and Dragon cargo ship loaded with critical supplies for the International Space Station (ISS) were destroyed by a catastrophic explosion starting approximately 148 seconds after a successful blastoff today, June 28, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT.

“Eastern Range confirms the Falcon 9 and Dragon vehicle broke up,” according to the USAF Eastern Range, 45th Space Wing as the vehicle was in flight and the first stage was firing.

The failure was immediately obvious to all of us watching the launch live on site from the Kennedy Space Center press site when the rocket disappeared into a expanding white cloud that was totally abnormal. See my launch and explosion photos herein.

“At this point, it’s not clear to the launch team exactly what happened,” NASA Launch Commentator George Diller reported on the live NASA TV broadcast.

It was the third launch failure of a cargo delivery run to the space station in the past half year -including both American and Russian rockets.

The Falcon 9 stopped ascending and broke apart and an abnormal vapor streak formed ahead of the rockets planned ascent path to orbit.

Within moments falling debris was visible in eyewitness photos from multiple angles.

SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket explodes about 2 minutes after liftoff from Cape Canaveral on June 28, 2015. Credit: Ken Kremer/kenkremer.com

“Falcon 9 experienced a problem shortly before first stage shutdown. Will provide more info as soon as we review the data,” tweeted SpaceX CEO Elon Musk soon after the explosion.

The pressurized section of the Dragon was packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45 on the ISS.

Details to follow

SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket exploded shortly after liftoff from Cape Canaveral. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Boeing, Space Taxis, Europa, Rosetta, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX set for Station Resupply Blastoff with Crew Docking Adapter and Bold Landing Attempt on June 28 – Watch Live

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

SpaceX Falcon 9 and Dragon are due to blastoff on June 28, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT on the CRS-7 mission to the International Space Station. Photo of last SpaceX launch to ISS in April 2015. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – With launch less than a day away for SpaceX’s seventh commercial resupply mission carrying a two ton payload of critical science and cargo for the future buildup of human spaceflight to the International Space Station (ISS) on Sunday, June 28, “everything is looking great” and all systems are GO, Hans Koenigsmann, SpaceX VP of mission assurance announced at a media briefing for reporters at the Kennedy Space Center.

The weather outlook along the Florida Space Coast is fantastic as U.S. Air Force 45th Weather Squadron forecasters are predicting a 90 percent chance of favorable conditions for lift off of the SpaceX Falcon 9 rocket and Dragon spacecraft, slated for 10:21 a.m. EDT, Sunday, June 28, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-7 mission.

If you are free this weekend and all continues to go well, this could well be your chance to be an eyewitness to a magnificent space launch in sunny Florida – and see a flight that signifies significant progress towards restoring America’s ability to once again launch our astronauts on American rockets from American soil.

NASA Television plans live launch coverage starting at 9 a.m EDT on June 28:

You can watch the launch live on NASA TV here: http://www.nasa.gov/nasatv

SpaceX also plans live launch coverage: www.spacex.com/webcast

Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com
Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays like on Monday due to weather or technical factors will force a scrub.

The mission is critical for NASA in more ways than one, in addition to the science cargo, the SpaceX Dragon spaceship is loaded with the first of two International Docking Adapters (IDA’s), pictured below, that will be connected to the space station to provide a place for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.

The approximately 30 inch thick and ring shaped IDA is loaded in the unpressurized truck section at the rear of the Dragon.

The pressurized section of the Dragon is packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These include critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko.

The science payloads will offer new insight to combustion in microgravity, perform the first space-based observations of meteors entering Earth’s atmosphere, continue solving potential crew health risks and make new strides toward being able to grow food in space, says NASA.

Some three dozen student science experiments are also flying aboard. The cargo also includes the METEOR camera.

Both IDA’s were built by Boeing. They will enable docking by the new space taxis being built by Boeing and Space X – the CST-100 and crew Dragon respectively, to carry our crews to the ISS and end our sole source reliance on the Russian Soyuz capsule.

IDA 1 will be attached to the forward port on the Harmony node, where the space shuttles used to dock.

Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com
Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com

If Dragon launches on Sunday as planned, it will reach the space station after a two day pursuit on Tuesday, June 30.

NASA’s Scott Kelly of NASA will use the station’s Canadarm2 robotic arm to reach out and capture Dragon at about 7 a.m. He will be assisted by Station commander Gennady Padalka of the Russian Federal Space Agency (Roscosmos) as they operate the 57 foot long arm from the station’s cupola.

NASA TV coverage of rendezvous and grapple of Dragon will begin at 5:30 a.m. on Tuesday. Coverage of Dragon’s installation to the Earth-facing port of the Harmony module will begin at 8:30 a.m.

The ship will remain berthed at the ISS for about five weeks.

Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Boeing, Space Taxis, Europa, Rosetta, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 27-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 and Dragon poised at Cape Canaveral Space Launch Complex 40 in Florida for planned April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon poised at Cape Canaveral Space Launch Complex 40 in Florida for planned April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com

Genesis of ULA’s New Vulcan Rocket Borne of Fierce Commercial and Political Pressures: Interview

Rendering of the ULA Vulcan rocket blasting off. United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

Fierce commercial and international political pressures have forced the rapid development of the new Vulcan launcher family recently announced by rocket maker United Launch Alliance (ULA). Vulcan’s “genesis” and development was borne of multiple unrelenting forces on ULA and is now absolutely essential and critical for its “transformation and survival in a competitive environment” moving forward, according to Dr. George Sowers, ULA Vice President for Advanced Concepts and Technology, in an exclusive interview with Universe Today.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” Dr. Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space and slated for an inaugural liftoff in 2019.

Faced with the combined challenges of a completely changed business and political environment emanating powerfully from new space upstart SpaceX offering significantly reduced launch costs, and continuing uncertainty over the future supply of the Russian-made RD-180 workhorse rocket engines that power ULA’s venerable Atlas V rocket, after Russia’s annexation of Crimea, Sowers and ULA’s new CEO Tory Bruno were tasked with rapidly resolving these twin threats to the firms future well being – which also significantly impacts directly on America’s national security.

“Our current plan is to have the new Vulcan rocket flying by 2019,” Sowers stated.

Whereas ULA enjoyed a virtual US launch monopoly for many years, those days are now history thanks to SpaceX.

Vulcan - United Launch Alliance (ULA)’s next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

The Vulcan launcher was created in response to the commercial SpaceX Falcon 9 rocket, and it will combine the best features of ULA’s existing unmanned Atlas V and Delta IV booster product lines as well as being revamped with new and innovative American-made first stage engines that will eventually be reusable.

It will meet and exceed the capabilities of ULA’s current stable of launchers, including the Delta IV Heavy which recently launched NASA’s maiden Orion crew module on an unmanned test flight in Dec. 2014.

“We at ULA were faced with how do we take our existing products and transform them into a single fleet that enables us to do the entire range of missions on just one family of rockets.”

“So that was really the genesis of what we now call the “Vulcan” rocket. So this single family will be able to do everything [from medium to heavy lift],” Sowers told me.

Another requirement is that Vulcan’s manufacturing methodology be extremely efficient, slashing costs to make it cost competitive with the Space X Falcon 9. Sowers said the launcher would sell “for less than $100 million” at the base level.

“Vulcan will be the highest-performing, most cost-efficient rocket on the market. It will open up new opportunities for the nation’s use of space,” says ULA CEO Tory Bruno.

In its initial configuration Vulcan’s first stage will be powered by a revolutionary new class of cost effective and wholly domestic engines dubbed the BE-4, produced by Blue Origin.

It can be augmented by up to six solid rocket boosters, to propel high value payloads on missions ranging from low Earth orbit to interplanetary destinations for NASA, private industry and vital US national security interests.

Vulcan will also blast off with astronaut crews aboard the Boeing CST-100 space taxi bound for the International Space Station (ISS) in the early 2020s.

Cutaway diagram of ULA’s new Vulcan rocket powered by BE-4 first stage engines, six solid rocket motors and a 5 meter diameter payload fairing. Credit ULA
Cutaway diagram of ULA’s new Vulcan rocket powered by BE-4 first stage engines, six solid rocket motors and a 5 meter diameter payload fairing. Credit ULA

Further upgrades including a powerful new upper stage called ACES, will be phased in down the road as launches of ULA’s existing rocket families wind down, to alleviate any schedule slips.

“Because rocket design is hard and the rocket business is tough we are planning an overlap period between our existing rockets and the new Vulcan rocket,” Sowers explained. “That will account for any delays in development and other issues in the transition process to the new rocket.”

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Development of the two Evolved Expendable Launch Vehicles (EELV’s) was originally funded by the U.S. Air Force to provide two independent and complimentary launch capabilities thereby offering assured access to space for America’s most critical military reconnaissance satellites gathering intelligence for the National Reconnaissance Office (NRO), DOD and the most senior US military and government leaders.

Since 2006, SpaceX (founded by billionaire Elon Musk) has emerged on the space scene as a potent rival offering significantly lower cost launches compared to ULA and other launch providers in the US and overseas – and captured a significant and growing share of the international launch market for its American-made Falcon rocket family.

And last year to top that all off, Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries, threatened to “ban Washington from using Russian-made [RD-180] rocket engines [used in the Atlas V rocket], which the US has used to deliver its military satellites into orbit.”

A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida.  Credit: Ken Kremer- kenkremer.com
ULA Atlas V rocket first stage is powered by Russian-made RD-180 engines.
United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com

“ULA was formed eight years ago as a government regulated monopoly focused on US government launches. Now eight years later the environment is changing,” Sowers told me.

How did ULA respond to the commercial and political challenges and transform?

“So there are a lot of things we had to do structurally to make that transformation. One of the key ones is that when ULA was formed, the government was very concerned about having assured access to space for national security launches,” Sowers explained.

“In their mind that meant having two independent rocket systems that could essentially do the same jobs. So we have both the Atlas V and the Delta IV. But in a competitive environment you can well imagine that that requirement drives your costs significantly higher than they need to be.”

ULA actually offered three rocket families after the merger, when only one was really needed.

“So our first conclusion on how to be competitive was how do we go from supporting three rocket families – including the Delta II – off of 6 launch pads, to our ultimate aim of getting down to just 1 rocket family of off just 2 pads – one on each coast. So, that is the most cost effective structure that we could come up with and the most competitive.”

Developing a new first stage engine not subject to international tensions was another primary impetus.

“The other big objective that was always in our minds, but that became much higher priority in April 2014 when Russia decided to annex Crimea, is that the RD-180 rocket engine that became our workhorse on Atlas, now became politically untenable.”

“So the other main objective of Vulcan is to re-engine [the first stage of] our fleet with an American engine, the Blue Origin BE-4.”

The RD-180’s will be replaced with a pair of BE-4 engines from Blue Origin, the highly secretive aerospace firm founded by Jeff Bezos, billionaire founder of Amazon. The revolutionary BE-4 engines are fueled by liquefied natural gas and liquid oxygen and will produce about 1.1 million pounds of thrust vs. about 900,000 pounds of thrust for the RD-180, a significant enhancement in thrust.

“The Blue Origin BE-4 is the primary engine [for Vulcan]. ULA is co-investing with Blue Origin in that engine.”

Although the BE-4 is ULA’s primary choice to replace the RD-180, ULA is also investing in development of a backup engine, the AR-1 from Aerojet-Rocketdyne, in case the BE-4 faces unexpected delays.

“As I said, rocket development is hard and risky. So we have a backup plan. That is with Aerojet-Rocketdyne and their AR-1. And we are investing in that engine as well.”

More on the Vulcan, BE-4, reusability and more upcoming in part 2.

ULA concept for SMART reuse capability for the new Vulcan rocket involves eventual midair recovery and reuse of the first stage engines.  Credit: ULA
ULA concept for SMART reuse capability for the new Vulcan rocket involves eventual midair recovery and reuse of the first stage engines. Credit: ULA

Meanwhile, the next commercial SpaceX Falcon 9 is due to blastoff this Sunday, June 28, on the Dragon CRS-7 resupply mission to the ISS.

Watch for my onsite reports from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about ULA, SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com