How High is Space?

The edge of space. Credit: NASA

Look up at the night sky, and what do you see? Space, glittering and gleaming in all its glory. Astronomically speaking, space is really quite close, lingering just on the other side of that thin layer we call an atmosphere. And if you think about it, Earth is little more than a tiny island in a sea of space. So it is quite literally all around us.

By definition, space is defined as being the point at which the Earth’s atmosphere ends, and the vacuum of space begins. But exactly how far away is that? How high do you need to travel before you can actually touch space? As you can probably imagine, with such a subjective definition, people tend to disagree on exactly where space begins.

Definition:

The first official definition of space came from the National Advisory Committee for Aeronautics (the predecessor to NASA), who decided on the point where atmospheric pressure was less than one pound per square foot. This was the altitude that airplane control surfaces could no longer be used, and corresponded to roughly 81 kilometers (50 miles) above the Earth’s surface.

The Bell X-1, in which Chuck Yeager “broke” the sound barrier in 1947. Credit: NASA
The Bell X-1, in which Chuck Yeager “broke” the sound barrier in 1947. Credit: NASA

Any NASA test pilot or astronaut who crosses this altitude is awarded their astronaut wings. Shortly after that definition was passed, the aerospace engineer Theodore von Kármán calculated that above an altitude of 100 km, the atmosphere would be so thin that an aircraft would need to be traveling at orbital velocity to derive any lift.

This altitude was later adopted as the Karman Line by the World Air Sports Federation (Fédération Aéronautique Internationale, FAI). And in 2012, when Felix Baumgartner broke the record for the highest freefall, he jumped from an altitude of 39 kilometers (24.23 mi), less than halfway to space (according to NASA’s definition).

By the same token, space is often defined as beginning at the lowest altitude at which satellites can maintain orbits for a reasonable time – which is approximately 160 kilometers (100 miles) above the surface. These varying definitions are complicated when one takes the definition of the word “atmosphere” into account.

Earth’s Atmosphere:

When we talk about Earth’s atmosphere, we tend to think of the region where air pressure is still high enough to cause air resistance, or where the air is simply thick enough to breath. But in truth, Earth’s atmosphere is made up of five main layers – the Troposphere, the Stratosphere, the Mesosphere, the Thermosphere, and the Exosphere – the latter of which extend pretty far out into space.

Space Shuttle Endeavour sillouetted against the atmosphere. The orange layer is the troposphere, the white layer is the stratosphere and the blue layer the mesosphere.[1] (The shuttle is actually orbiting at an altitude of more than 320 km (200 mi), far above all three layers.) Credit: NASA
Space Shuttle Endeavor silhouetted against Earth’s atmosphere. The orange layer is the troposphere, the white layer is the stratosphere and the blue layer the mesosphere. Credit: NASA
The Thermosphere, the second highest layer of the atmosphere, extends from an altitude of about 80 km (50 mi) up to the thermopause, which is at an altitude of 500–1000 km (310–620 mi). The lower part of the thermosphere, – from 80 to 550 kilometers (50 to 342 mi) – contains the ionosphere, which is so named because it is here in the atmosphere that particles are ionized by solar radiation.

Hence, this is where the phenomena known as Aurora Borealis and Aurara Australis are known to take place. The International Space Station also orbits in this layer, between 320 and 380 km (200 and 240 mi), and needs to be constantly boosted because friction with the atmosphere still occurs.

The outermost layer, known as the exosphere, extends out to an altitude of 10,000 km (6214 mi) above the planet. This layer is mainly composed of extremely low densities of hydrogen, helium and several heavier molecules (nitrogen, oxygen, CO²). The atoms and molecules are so far apart that the exosphere no longer behaves like a gas and the particles constantly escape into space.

It is here that Earth’s atmosphere truly merges with the emptiness of outer space, where there is no atmosphere. Hence why the majority of Earth’s satellites orbit within this region. Sometimes, the Aurora Borealis and Aurora Australis occur in the lower part of the exosphere, where they overlap into the thermosphere. But beyond that, there is no meteorological phenomena in this region.

Interplanetary vs. Interstellar:

Another important distinction when discussing space is the difference between that which lies between planets (interplanetary space) and that which lies between star systems (interstellar space) in our galaxy. But of course, that’s just the tip of the iceberg when it comes to space.

If one were to cast the net wider, there is also the space which lies between galaxies in the Universe (intergalactic space). In all cases, the definition involves regions where the concentration of matter is significantly lower than in other places – i.e. a region occupied centrally by a planet, star or galaxy.

In addition, in all three definitions, the measurements involved are beyond anything that we humans are accustomed to dealing with on a regular basis. Some scientists believe that space extends infinitely in all directions, while others believe that space is finite, but is unbounded and continuous (i.e. has no beginning and end).

In other words, there’s a reason they call it space – there’s just so much of it!

Exploration:

The exploration of space (that is to say, that which lies immediately beyond Earth’s atmosphere) began in earnest with what is known as the “Space Age“, This newfound age of exploration began with the United States and Soviet Union setting their sights on placing satellites and crewed modules into orbit.

The first major event of the Space Age took place on October 4th, 1957, with the launch of Sputnik 1 by the Soviet Union – the first artificial satellite to be launched into orbit. In response, then-President Dwight D. Eisenhower signed the National Aeronautics and Space Act on July 29th, 1958, officially establishing NASA.

Sputnik 1
Photograph of a Russian technician putting the finishing touches on Sputnik 1, humanity’s first artificial satellite. Credit: NASA/Asif A.

Immediately, NASA and the Soviet space program began taking the necessary steps towards creating manned spacecraft. By 1959, this competition resulted in the creation of the Soviet Vostok program and NASA’s Project Mercury. In the case of Vostok, this consisted of developing a space capsule that could be launched aboard an expendable carrier rocket.

Along with numerous unmanned tests, and a few using dogs, six Soviet pilots were selected by 1960 to be the first men to go into space. On April 12th, 1961, Soviet cosmonaut Yuri Gagarin was launched aboard the Vostok 1 spacecraft from the Baikonur Cosmodrome, and thus became the fist man to go into space (beating American Alan Shepard by just a few weeks).

On June 16th, 1963, Valentina Tereshkova was sent into orbit aboard the Vostok 6 craft (which was the final Vostok mission), and thus became the first woman to go into space. Meanwhile, NASA took over Project Mercury from the US Air Force and began developing their own crewed mission concept.

Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti
Yury Gagarin before a space flight aboard the Vostok spacecraft. April 12, 1961 Credit: RIA Novosti

Designed to send a man into space using existing rockets, the program quickly adopted the concept of launching ballistic capsules into orbit. The first seven astronauts, nicknamed the “Mercury Seven“, were selected from from the Navy, Air Force and Marine test pilot programs.

On May 5th, 1961, astronaut Alan Shepard became the first American in space aboard the Freedom 7 mission. Then, on February 20th, 1962, astronaut John Glenn became the first American to be launched into orbit by an Atlas launch vehicle as part of Friendship 7. Glenn completed three orbits of planet Earth, and three more orbital flights were made, culminating in L. Gordon Cooper’s 22-orbit flight aboard Faith 7, which flew on May 15th and 16th, 1963.

In the ensuing decades, both NASA and Soviets began to develop more complex, long-range crewed spacecraft. Once the “Race to the Moon” ended with the successful landing of Apollo 11 (followed by several more Apollo missions), the focus began to shift to establishing a permanent presence in space.

For the Russians, this led to the continued development of space station technology as part of the Salyut program. Between 1972 and 1991, they attempted to orbit seven separate stations. However, technical failures and a failure in one rocket’s second stage boosters caused the first three attempts after Salyut 1 to fail or result in the station’s orbits decaying after a short period.

Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA
Skylab, America’s First manned Space Station. Photo taken by departing Skylab 4 crew in Feb. 1974. Credit: NASA

However, by 1974, the Russians managed to successfully deploy Salyut 4, followed by three more stations that would remain in orbit for periods of between one and nine years. While all of the Salyuts were presented to the public as non-military scientific laboratories, some of them were actually covers for the military Almaz reconnaissance stations.

NASA also pursued the development of space station technology, which culminated in May of 1973 with the launch of Skylab, which would remain America’s first and only independently-built space station. During deployment, Skylab suffered severe damage, losing its thermal protection and one of its solar panels.

This required the first crew to rendezvous with the station and conduct repairs. Two more crews followed, and the station was occupied for a total of 171 days during its history of service. This ended in 1979 with the downing of the station over the Indian Ocean and parts of southern Australia.

By 1986, the Soviets once again took the lead in the creation of space stations with the deployment of Mir. Authorized in February 1976 by a government decree, the station was originally intended to be an improved model of the Salyut space stations. In time, it evolved into a station consisting of multiple modules and several ports for crewed Soyuz spacecraft and Progress cargo spaceships.

The Mir Space Station and Earth limb observed from the Orbiter Endeavour during NASA's STS-89 mission in 1998. Credit: NASA
The Mir Space Station and Earth limb observed from the Orbiter Endeavour during NASA’s STS-89 mission in 1998. Credit: NASA

The core module was launched into orbit on February 19th, 1986; and between 1987 and 1996, all of the other modules would be deployed and attached. During its 15-years of service, Mir was visited by a total of 28 long-duration crews. Through a series of collaborative programs with other nations, the station would also be visited by crews from other Eastern Bloc nations, the European Space Agency (ESA), and NASA.

After a series of technical and structural problems caught up with the station, the Russian government announced in 2000 that it would decommission the space station. This began on Jan. 24th, 2001, when a Russian Progress cargo ship docked with the station and pushed it out of orbit. The station then entered the atmosphere and crashed into the South Pacific.

By 1993, NASA began collaborating with the Russians, the ESA and the Japan Aerospace Exploration Agency (JAXA) to create the International Space Station (ISS). Combining NASA’s Space Station Freedom project with the Soviet/Russian Mir-2 station, the European Columbus station, and the Japanese Kibo laboratory module, the project also built on the Russian-American Shuttle-Mir missions (1995-1998).

With the retirement of the Space Shuttle Program in 2011, crew members have been delivered exclusively by Soyuz spacecraft in recent years. Since 2014, cooperation between NASA and Roscosmos has been suspended for most non-ISS activities due to tensions caused by the situation in the Ukraine.

However, in the past few years, indigenous launch capability has been restored to the US thanks to companies like SpaceX, United Launch Alliance, and Blue Origin stepping in to fill the void with their private fleet of rockets.

The ISS has been continuously occupied for the past 15 years, having exceeded the previous record held by Mir; and has been visited by astronauts and cosmonauts from 15 different nations. The ISS program is expected to continue until at least 2020, but may be extended until 2028 or possibly longer, depending on the budget environment.

As you can clearly see, where our atmosphere ends and space begins is the subject of some debate. But thanks to decades of space exploration and launches, we have managed to come up with a working definition. But whatever the exact definition is, if you can get above 100 kilometers, you have definitely earned your astronaut wings!

We have written many interesting articles about space here at Universe Today. Here is Why is Space Black?, How Cold is Space?, Space Debris Illustrated: The Problem in Pictures, What is Interplanetary Space?, What is Interstellar Space?, and What is Intergalactic Space?

For more information, check out NASA Reveals Mysteries of Interstellar Space and this list of Deep Space Missions.

Astronomy Cast has episodes on the subject, like the Space Stations Series, Episode 82: Space Junk, Episode 281: Explosions in Space, Episode 303: Equilibrium in Space, and Episode 311: Sound in Space.

Sources:

6 Million Years Ago The Milky Way’s Supermassive Black Hole Raged

Artist's concept of Sagittarius A, the supermassive black hole at the center of our galaxy. Credit: NASA/JPL

6 million years ago, when our first human ancestors were doing their thing here on Earth, the black hole at the center of the Milky Way was a ferocious place. Our middle-aged, hibernating black hole only munches lazily on small amounts of hydrogen gas these days. But when the first hominins walked the Earth, Sagittarius A was gobbling up matter and expelling gas at speeds reaching 1,000 km/sec. (2 million mph.)

The evidence for this hyperactive phase in Sagittarius’ life, when it was an Active Galactic Nucleus (AGN), came while astronomers were searching for something else: the Milky Way’s missing mass.

There’s a funny problem in our understanding of our galactic environment. Well, it’s not that funny. It’s actually kind of serious, if you’re serious about understanding the universe. The problem is that we can calculate how much matter we should be able to see in our galaxy, but when we go looking for it, it’s not there. This isn’t just a problems in the Milky Way, it’s a problem in other galaxies, too. The entire universe, in fact.

Our measurements show that the Milky Way has a mass about 1-2 trillion times greater than the Sun. Dark matter, that mysterious and invisible hobgoblin that haunts cosmologists’ nightmares, makes up about five sixths of that mass. Regular, normal matter makes up the last sixth of the galaxy’s mass, about 150-300 billion solar masses. But we can only find about 65 billion solar masses of that normal matter, made up of the familiar protons, neutrons, and electrons. The rest is missing in action.

Astrophysicists at the Harvard-Smithsonian Center for Astrophysics have been looking for that mass, and have written up their results in a new paper.

“We played a cosmic game of hide-and-seek. And we asked ourselves, where could the missing mass be hiding?” says lead author Fabrizio Nicastro, a research associate at the Harvard-Smithsonian Center for Astrophysics (CfA) and astrophysicist at the Italian National Institute of Astrophysics (INAF).

“We analyzed archival X-ray observations from the XMM-Newton spacecraft and found that the missing mass is in the form of a million-degree gaseous fog permeating our galaxy. That fog absorbs X-rays from more distant background sources,” Nicastro continued.

Artist's impression of the ESA's XMM Newton Spacecraft.  Image credit:  ESA
Artist’s impression of the ESA’s XMM Newton Spacecraft. Image credit: ESA

Nicastro and the other scientists behind the paper analyzed how the x-rays were absorbed and were able to calculate the amount and distribution of normal matter in that fog. The team relied heavily on computer models, and on the XMM-Newton data. But their results did not match up with a uniform distribution of the gaseous fog. Instead, there is an empty “bubble”, where this is no gas. And that bubble extends from the center of the galaxy two-thirds of the way to Earth.

What can explain the bubble? Why would the gaseous fog not be spread more uniformly through the galaxy?

Clearing gas from an area that large would require an enormous amount of energy, and the authors point out that an active black hole would do it. They surmise that Sagittarius A was very active at that time, both feeding on gas falling into itself, and pumping out streams of hot gas at up to 1000 km/sec.

Which brings us to present day, 6 million years later, when the shock-wave caused by that activity has travelled 20,000 light years, creating the bubble around the center of the galaxy.

Another piece of evidence corroborates all this. Near the galactic center is a population of 6 million year old stars, formed from the same material that at one time flowed toward the black hole.

“The different lines of evidence all tie together very well,” says Smithsonian co-author Martin Elvis (CfA). “This active phase lasted for 4 to 8 million years, which is reasonable for a quasar.”

The numbers all match up, too. The gas accounted for in the team’s models and observations add up to 130 billion solar masses. That number wraps everything up pretty nicely, since the missing matter in the galaxy is thought to be between 85 billion and 235 billion solar masses.

This is intriguing stuff, though it’s certainly not the final word on the Milky Way’s missing mass. Two future missions, the European Space Agency’s Athena X-ray Observatory, planned for launch in 2028, and NASA’s proposed X-Ray Surveyor could provide more answers.

Who knows? Maybe not only will we learn more about the missing matter in the Milky Way and other galaxies, we may learn more about the activity at the center of the galaxy, and what ebbs and flows it has gone through, and how that has shaped galactic evolution.

Metropolitan Milky Way

JanikAlheit-CPTMilkyPano

This article was written by contributing author Janik Alheit, and is used by permission from the original at PhotographingSpace.com.

When it comes to my style of photography, preparation is a key element in getting the shot I want.

On this specific day, we were actually planning on only shooting the low Atlantic clouds coming into the city of Cape Town. This in itself takes a lot of preparation as we had to keep a close eye on the weather forecasts for weeks using Yr.no, and the conditions are still unpredictable at best even with the latest weather forecasting technology.

We set out with cameras and camping gear with the purpose of setting up camp high up on Table Mountain so as to get a clear view over the city. The hike is extremely challenging at night, especially with a 15kg backpack on your back! We reached our campsite at about 11pm, and then started setting up our cameras for the low clouds predicted to move into the city at about 3am the next morning. For the next 2 hours or so we scouted for the best locations and compositions, and then tried to get a few hours of sleep in before the clouds arrived.

At about 3am I was woken up by fellow photographer Brendon Wainwright. I realised that he had been up all night shooting timelapses, and getting pretty impressive astro shots even though we were in the middle of the city. I noticed that the clouds had rolled in a bit earlier than predicted and had created a thick blanket over the city, which was acting as a natural light pollution filter.

I looked up at the skies and for the first time in my life I was able to see the core of the Milky Way in the middle of the city! This is when everything changed, the mission immediately became an astrophotography mission, as these kind of conditions are extremely rare in the city.

How to Photograph the Milky Way
Learn how to shoot the Milky Way at PhotographingSpace.com!

Composition

After shooting the city and clouds for a while, I turned my focus to the Milky Way. I knew I was only going to have this one opportunity to capture an arching Milky Way over a city covered with clouds, so I had to work fast to get the perfect composition before the clouds changed or faded away.

I set my tripod on top of a large rock that gave me a bit of extra height so that I could get as much of the city lights in the shot as possible. The idea I had in my mind was to shoot a panorama from the center of the city to the Twelve Apostles Mountains in the southwest. This was a pretty large area to cover, plus the Milky Way was pretty much straight above us which meant I had to shoot a massive field of view in order to get both the city and the Milky Way.

The final hurdle was to get myself into the shot, which meant that I had to stand on a 200m high sheer cliff edge! Luckily this was only necessary for one frame in the entire panorama.

Gear and settings

I usually shoot with a Canon 70D with an 18mm f/3.5 lens and a Hahnel Triad 40Lite tripod. This particular night I forgot to bring a spare battery for my Canon and by the time I wanted to shoot this photo, my one battery had already died!

Luckily I had a backup camera with me, an Olympus OMD EM10 mirrorless camera. I had no choice but to use this camera for the shot. The lens on that camera was an Olympus M.Zuiko 14-42mm f/3.5 kit lens, which was not ideal, but I just had to make it work.

I think this photo is a testament to the fact that your gear is not nearly as important as your technique and knowledge of your surroundings and your camera.

I started off by shooting the first horizontal line of photos, in landscape orientation, to form the bottom edge of the final stitched photo. From there I ended up shooting 6 rows of 7 photos each in order to capture the whole view I wanted. This gave me 42 photos in total.

For the most part, my settings were 25 seconds, f/3.5, ISO 2000, with the ISO dropped on a few of the pictures where the city light was too bright. I shot all the photos in raw as to get as much data out of each frame as possible.

Editing

Astrophotography is all about the editing techniques.

In this scenario I had to stitch 42 photos into one photo. Normally I would just use the built-in function in Lightroom, but in this case I had to use software called PTGui Pro, which is made for stitching difficult panoramas. This software enables me to choose control points on the overlapping images in order to line up the photos perfectly.

After creating the panorama in PTGui Pro, I exported it as a TIFF file and then imported that file into Lightroom again. Keep in mind that this one file is now 3GB as it is made up of 42 RAW files!

In Lightroom I went through my normal workflow to bring out the detail in the Milky Way by boosting the highlights a bit, adding contrast, a bit of clarity, and bringing out some shadows in the landscape. The most difficult part was to clear up the distortion that was caused by the faint clouds in the sky between individual images. Unfortunately it is almost impossible to blend so many images together perfectly when you have faint clouds in the sky that form and disappear within minutes, but I think I did the best job I could to even out the bad areas.

JanikAlheit-CPTMilkyPano
Photo: Janik Alheit

A special event

After the final touches were made and the photo was complete, I realized that I had captured something really unique. It’s not every day that you see low clouds hanging over the city, and you almost never see the Milky Way so bright above the city, and I managed to capture both in one image!

The response to the image after posting it to my Instagram account was extremely overwhelming. I got people from all over the world wanting to purchase the image and it got shared hundreds of time across all social media.

It just shows you that planning and dedication does pay off!

Astronomy Cast Ep. 415: Temperature of the Universe

The temperature of the Universe can vary a dramatic amount from the hot cores of stars to the vast cold emptiness of deep space. What’s the temperature of the Universe now, and what will it be in the future?

Visit the Astronomy Cast Page to subscribe to the audio podcast!

We record Astronomy Cast as a live Google+ Hangout on Air every Monday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch here on Universe Today or from the Astronomy Cast Google+ page.

Dwarf Dark Matter Galaxy Hides In Einstein Ring

The large blue light is a lensing galaxy in the foreground, called SDP81, and the red arcs are the distorted image of a more distant galaxy. By analyzing small distortions in the red, distant galaxy, astronomers have determined that a dwarf dark galaxy, represented by the white dot in the lower left, is companion to SDP81. The image is a composite from ALMA and the Hubble. Image: Y. Hezaveh, Stanford Univ./ALMA (NRAO/ESO/NAOJ)/NASA/ESA Hubble Space Telescope

Everybody knows that galaxies are enormous collections of stars. A single galaxy can contain hundreds of billions of them. But there is a type of galaxy that has no stars. That’s right: zero stars.

These galaxies are called Dark Galaxies, or Dark Matter Galaxies. And rather than consisting of stars, they consist mostly of Dark Matter. Theory predicts that there should be many of these Dwarf Dark Galaxies in the halo around ‘regular’ galaxies, but finding them has been difficult.

Now, in a new paper to be published in the Astrophysical Journal, Yashar Hezaveh at Stanford University in California, and his team of colleagues, announce the discovery of one such object. The team used enhanced capabilities of the Atacamas Large Millimeter Array to examine an Einstein ring, so named because Einstein’s Theory of General Relativity predicted the phenomenon long before one was observed.

An Einstein Ring is when the massive gravity of a close object distorts the light from a much more distant object. They operate much like the lens in a telescope, or even a pair of eye-glasses. The mass of the glass in the lens directs incoming light in such a way that distant objects are enlarged.

Einstein Rings and gravitational lensing allow astronomers to study extremely distant objects, by looking at them through a lens of gravity. But they also allow astronomers to learn more about the galaxy that is acting as the lens, which is what happened in this case.

If a glass lens had tiny water spots on it, those spots would add a tiny amount of distortion to the image. That’s what happened in this case, except rather than microscopic water drops on a lens, the distortions were caused by tiny Dwarf Galaxies consisting of Dark Matter. “We can find these invisible objects in the same way that you can see rain droplets on a window. You know they are there because they distort the image of the background objects,” explained Hezaveh. The difference is that water distorts light by refraction, whereas matter distorts light by gravity.

As the ALMA facility increased its resolution, astronomers studied different astronomical objects to test its capabilities. One of these objects was SDP81, the gravitational lens in the above image. As they examined the more distant galaxy being lensed by SDP81, they discovered smaller distortions in the ring of the distant galaxy. Hezaveh and his team conclude that these distortions signal the presence of a Dwarf Dark Galaxy.

But why does this all matter? Because there is a problem in the Universe, or at least in our understanding of it; a problem of missing mass.

Our understanding of the formation of the structure of the Universe is pretty solid, at least in the larger scale. Predictions based on this model agree with observations of the Cosmic Microwave Background (CMB) and galaxy clustering. But our understanding breaks down somewhat when it comes to the smaller scale structure of the Universe.

One example of our lack of understanding in this area is what’s known as the Missing Satellite Problem. Theory predicts that there should be a large population of what are called sub-halo objects in the halo of dark matter surrounding galaxies. These objects can range from things as large as the Magellanic Clouds down to much smaller objects. In observations of the Local Group, there is a pronounced deficit of these objects, to the tune of a factor of 10, when compared to theoretical predictions.

Because we haven’t found them, one of two things needs to happen: either we get better at finding them, or we modify our theory. But it seems a little too soon to modify our theories of the structure of the Universe because we haven’t found something that, by its very nature, is hard to find. That’s why this announcement is so important.

The observation and identification of one of these Dwarf Dark Galaxies should open the door to more. Once more are found, we can start to build a model of their population and distribution. So if in the future more of these Dwarf Dark Galaxies are found, it will gradually confirm our over-arching understanding of the formation and structure of the Universe. And it’ll mean we’re on the right track when it comes to understanding Dark Matter’s role in the Universe. If we can’t find them, and the one bound to the halo of SDP81 turns out to be an anomaly, then it’s back to the drawing board, theoretically.

It took a lot of horsepower to detect the Dwarf Dark Galaxy bound to SDP81. Einstein Rings like SDP81 have to have enormous mass in order to exert a gravitational lensing effect, while Dwarf Dark Galaxies are tiny in comparison. It’s a classic ‘needle in a haystack’ problem, and Hezaveh and his team needed massive computing power to analyze the data from ALMA.

ALMA will consist of 66 individual antennae like these when it is complete. The facility is located in the Atacama Desert in Chile, at 5,000 meters above sea level. Credit: ALMA (ESO / NAOJ / NRAO)
ALMA will consist of 66 individual antennae like these when it is complete. The facility is located in the Atacama Desert in Chile, at 5,000 meters above sea level. Credit: ALMA (ESO / NAOJ / NRAO)

ALMA, and the methodology developed by Hezaveh and team will hopefully shed more light on Dwarf Dark Galaxies in the future. The team thinks that ALMA has great potential to discover more of these halo objects, which should in turn improve our understanding of the structure of the Universe. As they say in the conclusion of their paper, “… ALMA observations have the potential to significantly advance our understanding of the abundance of dark matter substructure.”

Supermassive Black Hole Found In The Cosmic Boonies

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech

Astronomers have found a massive black hole in a place they never expected to find one. The hole comes in at 17 billion solar masses, which makes it the second largest ever found. (The largest is 21 billion solar masses.) And though its enormous mass is noteworthy, its location is even more intriguing.

Supermassive black holes are typically found at the centers of huge galaxies. Most galaxies have them, including our own Milky Way galaxy, where a comparatively puny 4 million solar mass black hole is located. Not only that, these gargantuan holes tend to be located in galaxies that are part of a large cluster of galaxies. Being surrounded by all that mass is a prerequisite for the formation of supermassive black holes. The largest one known, at 21 billion solar masses, is located in a very dense region of space called the Coma Cluster, where over 1,000 galaxies have been identified.

The largest supermassive holes also tend to be surrounded by bright companions, who have also grown large from the plentiful mass in their surroundings. (Of course, its not the black holes that are bright, but the quasars that surround them.) The long and the short of it is that supermassive black holes are usually found in galaxy clusters, and usually have other supermassive companions in the same region of space. They’re not found in isolation.

But this newly found black hole is in a rather sparse region of space. It’s in NGC 1600, an elliptical galaxy in the constellation Eridanus, 200 million light years from Earth. NGC 1600 is not a particularly large galaxy, and though it has been considered part of a larger group of galaxies, all its companions are much dimmer in comparison. So NGC 1600 is a rather small, isolated galaxy, with only a few dim companions.

A supermassive black hole of 17 billion solar masses has been found in the elliptical galaxy NGC 1600, a rather isolated galaxy with only dim companions. To date, supermassive black holes have only been found in huge galaxies at the centre of large clusters of galaxies. This image is a composite image from the Hubble and from ground observatories. Image Credit: NASA/ESA/Digital Sky Survey 2.
A supermassive black hole of 17 billion solar masses has been found in the elliptical galaxy NGC 1600, a rather isolated galaxy with only dim companions. To date, supermassive black holes have only been found in huge galaxies at the centre of large clusters of galaxies. This image is a composite image from the Hubble and from ground observatories. Image Credit: NASA/ESA/Digital Sky Survey 2.

There’s another way that supermassive holes can form. Instead of growing large over time, by feeding on the mass of their home galaxies and galaxy clusters, they can form when two galaxies merge, and two smaller holes become one. But even this requires that they be in a region where galaxies are plentiful, allowing for more collisions and mergers.

It may be possible that NGC is the result of a merger of two galaxies, or that it is two black holes that are currently merging. Or it could be that NGC 1600’s region of space was once extremely rich in gas, in the early days of the Universe, and that’s what gave rise to this ‘out of place’ supermassive black hole.

There is much to be learned about the conditions that give rise to these behemoth black holes. The MASSIVE study will combine several telescopes to survey and catalogue the largest galaxies and black holes. This should tell astronomers a lot about their distribution, and about the circumstances that allow them to exist. We might find even larger ones.

Nearby Supernovas Showered Earth With Iron

We all know that we are “made of star-stuff,” with all of the elements necessary for the formation of planets and even life itself having originated inside generations of massive stars, which over billions of years have blasted their creations out into the galaxy at the explosive ends of their lives. Supernovas are some of the most powerful and energetic events in the known Universe, and when a dying star finally explodes you wouldn’t want to be anywhere nearby—fresh elements are nice and all but the energy and radiation from a supernova would roast any planets within tens if not hundreds of light-years in all directions. Luckily for us we’re not in an unsafe range of any supernovas in the foreseeable future, but there was a time geologically not very long ago that these stellar explosions are thought to have occurred in nearby space… and scientists have recently found the “smoking gun” evidence at the bottom of the ocean.

Two independent teams of “deep-sea astronomers”—one led by Dieter Breitschwerdt from the Berlin Institute of Technology and the other by Anton Wallner from the Australian National University—have investigated sediment samples taken from the floors of the Pacific, Atlantic, and Indian oceans. The sediments were found to contain relatively high levels of iron-60, an unstable isotope specifically created during supernovas.

The Local Bubble is a 300-light-year long region that was carved out of the interstellar medium by supernovas (Source: Science@NASA)
The Local Bubble is a 300-light-year long region that was carved out of the interstellar medium by supernovas (Source: [email protected])

Watch: How Quickly Does a Supernova Happen?

The teams found that the ages of the iron-60 concentrations (the determination of which was recently perfected by Wallner) centered around two time periods, 1.7 to 3.2 million years ago and 6.5 to 8.7 million years ago. Based on this and the fact that our Solar System currently resides within a peanut-shaped region virtually empty of interstellar gas known as the Local Bubble, the researchers are confident that this provides further evidence that supernovas exploded within a mere 330 light-years of Earth, sending their elemental fallout our way.

“This research essentially proves that certain events happened in the not-too-distant past,” said Adrian Melott, an astrophysicist and professor at the University of Kansas who was not directly involved with the research but published his take on the findings in a letter in Nature. (Source)

The researchers think that two supernova events in particular were responsible for nearly half of the iron-60 concentrations now observed. These are thought to have taken place among a a nearby group of stars known as the Scorpius–Centaurus Association, some 2.3 and 1.5 million years ago. At those same time frames Earth was entering a phase of repeated global glaciation, the end of the last of which led to the rise of modern human civilization.

While supernovas of those sizes and distances wouldn’t have been a direct danger to life here on Earth, could they have played a part in changing the climate?

Read more: Could a Faraway Supernova Threaten Earth?

“Our local research group is working on figuring out what the effects were likely to have been,” Melott said. “We really don’t know. The events weren’t close enough to cause a big mass extinction or severe effects, but not so far away that we can ignore them either. We’re trying to decide if we should expect to have seen any effects on the ground on the Earth.”

Regardless of the correlation, if any, between ice ages and supernovas, it’s important to learn how these events do affect Earth and realize that they may have played an important and perhaps overlooked role in the history of life on our planet.

“Over the past 500 million years there must have been supernovae very nearby with disastrous consequences,” said Melott. “There have been a lot of mass extinctions, but at this point we don’t have enough information to tease out the role of supernovae in them.”

You can find the teams’ papers in Nature here and here.

Sources: IOP PhysicsWorld and the University of Kansas

 

UPDATE 4/14/16: The presence of iron-60 from the same time periods as those mentioned above has also been found on the Moon by research teams in Germany and the U.S. Read more here.

Did the Sun Steal Planet Nine?

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

One of the biggest new mysteries in our Solar System is the purported presence of a large and distant “Planet Nine,” traveling around the Sun in a twenty-thousand-year orbit far beyond Pluto. Although this far-flung world’s existence has yet to actually be confirmed (or even directly detected) some scientists are suggesting it might have originally been an exoplanet around a neighboring star, pilfered by our Sun during its impudent adolescence.

Continue reading “Did the Sun Steal Planet Nine?”

DSCOVR Captures EPIC Views of the March 2016 Eclipse

On March 8, 2016 (March 9 local time) the Moon briefly blocked the light from the Sun in what was the only total solar eclipse of the year. The event was visible across portions of southeast Asia, Indonesia, and Micronesia, and was observed by both skywatchers on the ground in person and those watching live online around the world. While to most the view was of a silhouetted Moon slowly carving away the disk of the Sun before totality revealed a shimmering corona, the view from space looking back at Earth showed the Moon’s dark shadow passing over islands, clouds, and sea.

Continue reading “DSCOVR Captures EPIC Views of the March 2016 Eclipse”

China Plans Space Telescope That Will Dock With Their Space Station

Will China's new space telescope out-perform the Hubble? Image:

China has plans to build a new space telescope which should outperform Hubble. According to the Chinese English Language Daily, the new telescope will be similar to Hubble, but will have a field of view that is 300 times larger. The new telescope, which has not been named yet, will have the ability to dock with China’s modular space station, the Tiangong.

The China National Space Administration has come up with a solution to a problem that dogged the Hubble Telescope. Whenever the Hubble needed repairs or maintenance, a shuttle mission had to be planned so astronauts could service it. China will avoid this problem with its innovative solution. The Chinese telescope will keep its distance from the Tiangong, but if repairs or maintenance are needed, it can dock with Tiangong.

No date has been given for the launch of this new telescope, but its plans must be intertwined with plans for the modular Tiangong space station. Tiangong-1 was launched in 2011 and has served as a crewed laboratory and a technological test-bed. The Tiangong-2, which has room for a crew of 3 and life support for twenty days, is expected to be launched sometime in 2016. The Tiangong-3 will provide life support for 3 people for 40 days and will expand China’s capabilities in space. It’s not expected to launch until sometime in the 2020’s, so the space telescope will likely follow its launch.

An artist's rendering of the Tiangong-1 module, China's space station, which was launched to space in September, 2011. To the right is a Shenzhou spacecraft, preparing to dock with the module. Image Credit: CNSA
An artist’s rendering of the Tiangong-1 module, China’s space station, which was launched to space in September, 2011. To the right is a Shenzhou spacecraft, preparing to dock with the module. Image Credit: CNSA

The telescope, according to the People’s Daily Online, will take 10 years to capture images of 40% of space, with a precision equal to Hubble’s. China hopes this data will allow it to make breakthroughs in the understanding of the origin, development, and evolution of the universe.

This all sounds great, but there’s a shortage of facts. When other countries and space agencies announce projects like this, they give dates and timelines, and details about the types of cameras and sensors. They talk about exactly what it is they plan to study and what results they hope to achieve. It’s difficult to say what level of detail has gone into the planning for this space telescope. It’s also difficult to say how the ‘scope will dock with the space station.

It may be that China is nervous about spying and doesn’t want to reveal any technical detail. Or it may be that China likes announcing things that make it look technologically advanced. (China is in a space race with India, and likes to boast of its prowess.) In any case, they’ve been talking about a space telescope for many years now. But a little more information would be nice.

Come on China. Give us more info. We’re not spies. We promise.