The Bigelow Expandable Module Is About To Blow Up

This computer rendering shows the Bigelow Expanded Activity Module in its fully expanded configuration. Image: NASA

Update:

The Bigelow Expandable Activity Module did not fully expand today, May 26th, as planned. Engineers are meeting to try to understand why the module didn’t fully expand. They are evaluating data from the expansion to determine what has happened. If the data says its okay to resume expansion, that could happen as early as tomorrow, May 27th.

A previously scheduled teleconference has been postponed, and NASA will update when a decision on expansion is made.

People who aren’t particularly enthusiastic about space science and space exploration often accuse those of us who are, of “living in a bubble.” There are so many seemingly intractable problems here on Earth, so they say, that it’s foolish to spend so much money and time on space exploration. But if all goes well with the Bigelow Expandable Activity Module (BEAM) at the ISS this week, astronauts may well end up living in a sort of bubble.

Expandable, inflatable habitats could bring about a quiet revolution in space exploration, and the BEAM is leading that revolution. Because it’s much more compact and much lighter than rigid steel and aluminum structures, the cost of building them and launching them into space is much lower. The benefits of lower costs for building them and launching them are obvious.

NASA first announced plans to test the BEAM back in 2013. They awarded a $17.8 million contract to Bigelow Aerospace to provide the expandable module, with the idea of testing it for a two-year period.

NASA Deputy Administrator Lori Garver and Bigelow Aerospace founder Robert Bigelow stand in front of the BEAM in January, 2013. Image: NASA/Bill Ingalls
NASA Deputy Administrator Lori Garver and Bigelow Aerospace founder Robert Bigelow stand in front of the BEAM in January, 2013. Image: NASA/Bill Ingalls

When the contract was announced, NASA Deputy Administrator Lori Garver said, “The International Space Station is a unique laboratory that enables important discoveries that benefit humanity and vastly increase understanding of how humans can live and work in space for long periods. This partnership agreement for the use of expandable habitats represents a step forward in cutting-edge technology that can allow humans to thrive in space safely and affordably, and heralds important progress in U.S. commercial space innovation.”

Though no astronauts will be living in the module, it will be tested to see how it withstands the rigours of space. ISS astronauts will enter the module periodically, but for the most part, the module will be monitored remotely. Of particular interest to NASA is the module’s ability to withstand solar radiation, debris impact, and temperature extremes.

The BEAM was launched in April aboard a SpaceX Dragon Capsule, itself carried aloft by a SpaceX Falcon rocket. Personnel aboard the ISS used the station’s robotic arm to unpack the BEAM and attach it to the station. That procedure went well, and now the BEAM is ready for inflation.

This sped-up animation shows the ISS's robotic arm removing the uninflated BEAM from the Dragon capsule and attaching it to the station. Credit: NASA
This sped-up animation shows the ISS’s robotic arm removing the uninflated BEAM from the Dragon capsule and attaching it to the station. Credit: NASA

How exactly the BEAM will behave while it’s being inflated is uncertain. The procedure will be done slowly and methodically, with the team exercising great caution during inflation.

Once inflated, the BEAM will expand to almost five times its travelling size. While packed inside the Dragon capsule, the module is 8 ft. in diameter by 7 ft. in length. After inflation, it will measure 10 ft. in diameter and 13 ft. in length, and provide 16 cubic meters (565 cubic ft.) of habitable volume. That’s about as large as a bedroom.

After inflation, the BEAM will sit for about a week before any astronauts enter it. After that, the plan is to visit the module 2 or 3 times per year to check conditions inside. During those visits, astronauts will also get sensor data from equipment inside the BEAM.

Some, including Bigelow CEO Robert Bigelow, are hopeful that after the first six months or so, the timeline can be accelerated a little. If NASA approves it, the BEAM could be used for science experiments at that time.

As for Bigelow itself, they are already working on the B330, a much larger expandable habitat that promises even greater impact durability and radiation protection than the BEAM. Bigelow hopes that the B330 could be used on the surface of the Moon and Mars, as well as in orbit.

The BEAM will never attract the attention that rocket launches and Mars rovers do. But their impact on space exploration will be hard to deny. And when naysayers accuse us of living in a bubble, we can smile and say, “We’re working on it.”

Inflatable Space Habitat To Be Tested On The ISS

The Bigelow Expandable Activity Module (BEAM) will be launched onboard a SpaceX Dragon on Friday April 8th for a 2-year mission. Astronauts will test the module during that time. Image Bigelow Aerospace.

Space habitats have long been an object of fascination for thinkers, dreamers, and engineers. Science fiction is littered with space habitats, whether in books or movies. And their designs have ranged from titanic, uber-engineered types to fanciful, organic types.

Bigelow Aerospace is one company that is focused on creating affordable, practical space habitats. Inflatability is the name of the game for Bigelow, and now, one of their habitat modules is going to be tested on the ISS for a 2-year period. The BEAM, or Bigelow Expandable Activity Module, will be launched aboard a SpaceX Dragon on Friday April 8th, for a 2-day journey to the ISS.

The BEAM travels as an 8 foot bundle, but once it’s attached to the ISS, and inflated by astronauts, it will be large enough to hold a car. However, astronauts won’t be living inside it; rather, the BEAM will be tested for 2 years to see how it holds up. The objectives for this 2 year mission include:

  • Demonstrating launch and deployment, as well as folding and packing techniques.
  • Determining radiation protection capability.
  • Demonstrating design performance such as thermal, structural, mechanical durability, long-term leak performance, etc.
  • Increasing Technology Readiness Level (TRL) of expandable habitat technology
The BEAM with human figure for scale. Image: Bigelow Aerospace.
The BEAM with human figure for scale. Image: Bigelow Aerospace.

“The International Space Station is a uniquely suited test bed to demonstrate innovative exploration technologies like the BEAM,” said William Gerstenmaier, associate administrator for human exploration and operations at NASA Headquarters in Washington. “As we venture deeper into space on the path to Mars, habitats that allow for long-duration stays in space will be a critical capability. Using the station’s resources, we’ll learn how humans can work effectively with this technology in space, as we continue to advance our understanding in all aspects for long-duration spaceflight aboard the orbiting laboratory.”

The obvious risk to an inflatable space habitat is puncturing; not only from meteoroids, but from the growing population of space junk that inhabits Earth’s orbit.  But BEAM is designed with this hazard in mind. It’s a thick-walled design, made from multiple layers of fabric similar to Kevlar. As far as space junk goes, BEAM should be impenetrable.

The BEAM is just a test module. It will hold only monitoring equipment, and will be entered by astronauts retrieving data and performing inspections. Bigelow Aerospace’s design for a usable habitat is the B330, a module large enough for 6 occupants, with a projected lifespan of 20 years. Test results from BEAM’s 2 years in space will help refine the design of the B330.

After its 2 years are up, BEAM will be released from the ISS and will be destroyed when it enters Earth’s atmosphere.

Cygnus Commercial Space Freighter Arrives at Space Station with 3.5 Tons of Supplies

Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT.  Credit: NASA/ESA/Tim Peake
Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT. Credit: NASA/ESA/Tim Peake

KENNEDY SPACE CENTER, FL – Following a perfectly executed three day orbital rendezvous, NASA astronaut and Expedition 47 Commander Tim Kopra successfully reached out with the International Space Station’s robotic arm, Canadarm2, grabbed hold and captured Orbital ATK’s commercial Cygnus cargo freighter at 6:51 a.m. EDT, this morning, Saturday, March 26, 2016.

The ISS and Cygnus were soaring some 250 miles (400 kilometers) over the Indian Ocean at the time of capture following the cargo crafts blastoff atop a two stage United Launch Alliance (ULA) Atlas V at 11:05 p.m. EDT on Tuesday, March 22, 2016 from Space Launch Complex 41 on Cape Canaveral Air Force Station, Fl.

Robotics officers on the ground in Houston working with the station crew high above then maneuvered Cygnus – holding over 3.5 tons of critical cargo supplies and science – into position for final installation and berthing to the orbiting laboratory’s Earth-facing port on the Unity module a few hours later. It was finally bolted fully into place at approximately 10:52 a.m. EDT.

Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT. Credit: NASA TV
Orbital ATK Cygnus CRS-6/OA-6 space freighter arrives for capture and berthing at the International Space Station on Saturday, March 26, 2016 at 6:51 a.m. EDT. Credit: NASA TV

This Cygnus is named the S.S. Rick Husband in honor of Col. Rick Husband, the late commander of Space Shuttle Columbia, which was tragically lost with its crew of seven NASA astronauts during re-entry on its final flight on Feb. 1, 2003.

The crew plans to open the hatch to the SS Rick Husband tomorrow morning on Easter Sunday, March 26.

The Orbital ATK Cygnus CRS-6 space freighter is loaded with 3513 kg (7700 pounds) of science experiments and hardware, crew supplies, spare parts, gear and station hardware for the orbital laboratory in support of over 250 research experiments being conducted on board by the Expedition 47 and 48 crews.

A computer overlay with engineering data provides video of the Canadarm2 robotic arm maneuvering to capture the Orbital ATK Cygnus OA-6 space freighter on Saturday, March 26, 2016 at 651 a.m. EDT. Credit: NASA TV
A computer overlay with engineering data provides video of the Canadarm2 robotic arm maneuvering to capture the Orbital ATK Cygnus OA-6 space freighter on Saturday, March 26, 2016 at 651 a.m. EDT. Credit: NASA TV

All of Cygnus maneuvers were “executed to perfection for a flawless approach and rendezvous” after the three day trip from Florida to the ISS, as the vehicle closed in to within a few meters for grappling, said NASA commentator Rob Navius.

NASA TV showed spectacular HD views of Cygnus and its UltraFlex solar arrays – deployed 2 hours after launch – from station and robotic arm cameras during the final approach operation, as flight controllers closely monitored all spacecraft systems.

“The crew is ready for Cygnus approach to the capture point,” radioed Kopra.

“Station you are go for capture,” Mission Control radioed back.

Cygnus was placed into free drift mode before capture to prevent any accidental perturbations in the final seconds.

From his robotics work station in the Cupola, Kopra then put the arm in motion by about 6:40 a.m. EDT, during the final phase of the final approach. He extended the 57 foot long (19 meter long) arm to reach out and grab the aft end of Cygnus cargo craft at its grappling pin by closing the snares on the end effector.

ESA astronaut Tim Peake served as backup for arm operations while NASA astronaut Jeff Williams monitored Cygnus systems.

The SS Rick Husband was rock steady during its capture as the station was flying over South Africa and the Indian Ocean.

“Capture confirmed,” reported Navius just moments before the video downlink was temporarily lost as the station communications moved between satellites.

“Excellent work gentleman. Much appreciated. Made that look easy,” radioed Jeremy Hansen, a Canadian Space Agency astronaut from Houston mission control.

“We’d also like to say we are really honored to bring aboard the SS Rick Husband to the International Space Station,” radioed Kopra. “He was a personal hero to many of us. This will be the first Cygnus honoree who was directly involved with the construction of this great station.”

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. The Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

It took about 9 minutes to complete the approach from the 30 meter distant hold point to the final capture point where the SS Rick Husband Cygnus arrived at about 6:37 am EDT. NASA TV showed the grapple fixture gradually coming into view.

Cygnus approached precisely within the center of the approach corridor, said Peake, during continuing updates as the ship moved closer to the targeted berthing port. It was perfectly aligned for its capture point.

Cygnus grapple fixture is located at the bottom end of the vehicles service module, beside the thruster.

Kopra and Peake are spending their 103rd day on the station today. While Williams arrived just 8 days ago.

All burns to get to the initial rendezvous point in the keep out sphere 250 meters away were “right on the money. Every burn has been on course and on target, said NASA JSC commentator Navius in Houston, as Cygnus soared some 400 km over the Pacific.

“Everything has gone off without a hitch. A rock solid approach.”

Flight controllers in Houston and Orbital ATK’s Dulles control headquarters then gave the go ahead to resume moving and approach closer to the 30 meter hold point.

The actual berthing operation took place about an hour later than expected to double check that everything was precisely aligned and communications were fully established.

Controllers used the arm to move Cygnus in for capture. They commanded four gangs of four bolts to latch Cygnus to the common berthing mechanism (CBM) on the internally positioned Unity modules nadir or Earth-facing port.

The first and second stage captures were successfully completed by 10:52 a.m. EDT this morning, marking the official hard mating of Cygnus and the station.

When the ISS Expedition 47 crew members open the hatch, they will be greeted with a sign noting the spacecraft was named SS Rick Husband in honor of the STS-107 mission commander.

Orbital ATK #Cygnus mated to Unity module at 10:52 a.m.  EDT (2:52 p.m. UTC). Graphic shows location of five spacecraft at station now.  Credit: NASA
Orbital ATK #Cygnus mated to Unity module at 10:52 a.m. EDT (2:52 p.m. UTC). Graphic shows location of five spacecraft at station now. Credit: NASA

The SS Rick Husband Cygnus is actually at the vanguard of a “constellation” of three resupply ships arriving at the station over a three week period of three weekends.

Next comes the Russian Progress 63 which will dock at Russia’s Zvezda module next weekend after launching this Thursday from site 31 at Kaszakhstan carrying another three tons of supplies.

Following Progress is the SpaceX Return To Flight (RTF) mission dubbed SpaceX CRS-8.

It is slated to launch on April 8 and arrive at the ISS on April 10 for berthing to the Earth-facing port of the Harmony module – at the end of the station where NASA space shuttles formerly docked. It carries another 3.5 tons of supplies.

So altogether the trio of international cargo ships will supply over 12 tons of station supplies in rapid succession over the next 3 weeks.

This choreography will set up America’s Cygnus and Dragon resupply craft to simultaneously be present and reside attached at adjacent ports on the ISS for the first time in history.

A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016.  The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments.  Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V launch vehicle lifts off from Cape Canaveral Air Force Station carrying a Cygnus resupply spacecraft on the Orbital ATK CRS-6 mission to the International Space Station. Liftoff was at 11:05 p.m. EDT on March 22, 2016. The spacecraft will deliver 7,500 pounds of supplies, science payloads and experiments. Credit: Ken Kremer/kenkremer.com

Plans currently call for Cygnus to stay at station for approximately two months until May 20th, when it will be unbolted and unberthed for eventual deorbiting and reentry.

But first it will stay on orbit for about another eight days, said Orbital ATK’s Cygnus program manager Frank DeMauro in an interview with Universe Today.

After unberthing, Cygnus will be used to conduct several experiments including the Saffire-1 experiment, it will deploy nanosats from an externally mounted carrier, and the REBR experiment will monitor the burn-up of Cygnus during the fiery reentry into the Earth’s atmosphere, said DeMauro.

Orbital ATK’s attention then shifts to the next Cygnus launch on the Return to Flight, or RTF, mission of the firms Antares rocket from NASA Wallops on the eastern shore of Virginia.

OA-6 is only the second Cygnus to be launched atop a ULA Atlas V rocket, following the OA-4 mission last December.

The CRS-6/OA-6 flight is also the second flight of the enhanced Cygnus variant, that is over 1 meter longer and sports 50% more volume capability.

Thus it is capable of carrying a much heavier payload of some 3500 kg (7700 lbs) vs. a maximum of 2300 kg (5070 lbs) for the standard version.

Watch for Ken’s onsite launch reports direct from the Kennedy Space Center in Florida and continuing mission reports.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Video caption: Mobius video camera placed at Florida launch pad captures blastoff up close of Orbital ATK OA-6 (CRS-6) mission riding to orbit atop a United Launch Alliance Atlas V rocket on March 22, 2016 at 11:05 p.m. EDT from Space Launch Complex-41 on Cape Canaveral Air Force Station. Credit: Ken Kremer/kenkremer.com

Russian Crowdfunded Satellite May Soon Become Brightest “Star” in the Sky

Artist’s view of the proposed Mayak (Beacon) satellite fully unfurled and orbiting Earth. Credit: cosmomayak.ru / Mayak Project

We may soon look up and see a satellite brighter than the space station and even Venus gliding across the night sky if a Russian crowdfunding effort succeeds. An enthusiastic team of students from Moscow University of Mechanical Engineering are using Boomstarter, the Russian equivalent of Kickstarter, to raise the money needed to build and launch a pyramid-shaped satellite made of highly reflective material they’re calling Mayak, Russian for “Beacon”.


Young engineers at Moscow University explain the Mayak Project

To date they’ve collected more than $23,000 or 1.7 million rubles. Judging from the video, the team has built the canister that would hold the satellite (folded up inside) and performed a high-altitude test using a balloon. If funding is secured, Beacon is scheduled to launch on a Soyuz-2 rocket from the Baikonur Cosmodrome in the second quarter of this year.

Illustration of the “Beacon” unfurling from its canister when it reaches orbit. The Mayak Project used the Russian version of Kickstarter called Boomstarter to fund the project. Credit: cosmomayak.ru / Mayak Project
Illustration of the “Beacon” inflating from its canister after reaching orbit. The Mayak Project used the Russian version of Kickstarter called Boomstarter to fund the project. Credit: cosmomayak.ru / Mayak Project

Once in orbit, Beacon will inflate into a pyramid with a surface area of 172 square feet (16 square meters). Made of reflective metallized film 20 times thinner than a human hair, the satellite is expected to become the brightest man-made object in orbit ever. That title is currently held by the International Space Station which can shine as brightly as magnitude -3 or about three times fainter than Venus. The brightest satellites, the Iridiums, can flare to magnitude -8 (as bright as the crescent moon) but only for a few seconds before fading back to invisibility. They form a “constellation” of  some 66 satellites that provide data and voice communications.

A student at the Mayak Lab in Moscow describes the container used to hold the reflective "Beacon" satellite. Credit:
A student at the Mayak Lab in Moscow describes the container used to hold the reflective “Beacon” satellite. Credit: cosmomayak.ru / Mayak Project

A concurrently-developed mobile app would allow users to know when Beacon would pass over a particular location. The students hope to achieve more than just track a bright, moving light across the sky. According to their website, the goal of the project is the “popularization of astronautics and space research in Russia, as well as improving the attractiveness of science and technology education among young people.” They want to show that almost anyone can build and send a spacecraft into orbit, not just corporations and governments.

Further, the students hope to test aerodynamic braking in the atmosphere and find out more about the density of air at orbital altitudes. Interested donors can give anywhere from 300 rubles (about $5) up 300,000 ($4,000). The more money, the more access you’ll have to the group and news of the satellite’s progress; the top donor will get invited to watch the launch on-site.

Moscow University students release the satellite on a test run. Credit: cosmomayak.ru / Mayak Project
Liftoff! Moscow University students release the satellite on a test run. Credit: cosmomayak.ru / Mayak Project

Once finished with the Mayak Project, the team wants to built another version that uses that atmosphere for braking its speed and returning it — and future satellites — safely back to Earth without the need for retro-rockets.

I think all these goals are worthy, and I admire the students’ enthusiasm. I only hope that satellite launching doesn’t become so cheap and popular that we end up lighting up the night sky even further. What do you think?

Space Station Back At Dusk / See Orion’s Curlicue and Five Dawn Planets

I hadn’t been paying attention, so I was pleasantly surprised two nights ago to see the International Space Station (ISS) made a bright pass in the southwestern sky. A quick check revealed that another round of evening passes had begun for locations across the central and northern U.S., Canada and Europe.  I like the evening ones because they’re so much convenient to view than those that occur at dawn. You can find out when the space station passes over your house at NASA’s Spot the Station site or Heavens Above.

The six-member Expedition 46 crew are wrapping up their work week on different types of research including botany, bone loss and pilot testing. Plants are being grown on the International Space Station so future crews can learn to become self-sustainable as they go farther out in space. While they work their jobs speeding at more than 17,000 mph overhead, we carry on here on the surface of the blue planet.

Edgar Mitchell stands by the U.S. flag he and fellow astronaut Alan Shepard planted on the Fra Mauro region of the moon back in February 1971. Credit: NASA
Edgar Mitchell stands by the U.S. flag he and fellow astronaut Alan Shepard planted on the Fra Mauro region of the moon back in February 1971. Credit: NASA

U.S. astronaut Scott Kelly regularly tweets photos from the station and recently noted the passing of Apollo 14 astronaut Edgar Mitchell, who died Thursday at age 85 on the eve of the 45th anniversary of his lunar landing on February 5, 1971. Mitchell was one of only 12 people to walk on the moon and described the experience to the UK Telegraph in 2014:


Relive the Mitchell’s Apollo 14 mission to the moon in 9 minutes and 57 seconds

“Looking at Earth from space and seeing it was a planet in isolation … that was an experience of ecstasy, realizing that every molecule in our bodies is a system of matter created from a star hanging in space. The experience I had was called Samadhi in the ancient Sanskrit, a feeling of overwhelming joy at seeing the Earth from that perspective.”

A pair of binoculars will make the "Curlicue" pop in Orion's Belt. Although the stars aren't related, they form a delightfully curvy line-of-sight pattern. Credit: Bob King
A pair of binoculars will make the “Curlicue” pop in Orion’s Belt. Although the stars aren’t related, they form a delightfully curvy line-of-sight pattern. Credit: Bob King

Only a human could stand in so barren and forbidding a place and experience such profound joy. You don’t have to go to the moon to be moved by sights in the night. Just step outside and watch the ISS glide by or grab a pair of binoculars and aim them at Orion’s Belt. Orion stands due south around 8 o’clock in in mid-February practically shouting to be looked at.

A pair of binoculars will make the "Curlicue" pop in Orion's Belt. Although the stars aren't related, they form a delightfully curvy line-of-sight pattern. Credit: Bob King
This wider view shows the Belt, Curlicue and the Orion Nebula just to the south — all excellent objects for binocular study. Stellarium

The Belt is lovely enough, but its surroundings glitter with stars just below the naked eye limit, in particular a little curlicue or “S” between Alnilam and Mintaka composed of 6th and 7th magnitude stars. Look for it in any pair of binoculars and don’t stop there. Take a few minutes to sweep the area and enjoy the starry goodness about then drop a field of view south for a look at the Orion Nebula. Inside this fuzzy spot 10 light years across and 1,350 light years away, hundreds of new stars are incubating, waiting for the day they can blaze forth like their compadres that make up the rest of Orion.

A thin crescent moon visited Venus and fainter Mercury this morning Feb. 6th at dawn over Rome, Italy. Credit: Gianluca Masi
A thin crescent moon visited Venus and fainter Mercury this morning Feb. 6th at dawn over Rome, Italy. Credit: Gianluca Masi

After touting the advantages of evening sky watching, forgive me if I also direct you to the morning sky and potential sleep loss. Although the waning crescent moon has now departed the scene, the wonderful alignment of Mercury, Venus, Saturn, Mars and Jupiter remains visible in the coming week even as Mercury slowly sinks back toward the eastern horizon. If you haven’t seen this “gang of 5”, set your alarm for a look starting about an hour before sunrise.

This map shows the entire southern sky around 45 minutes to an hour before sunrise Sunday morning Feb. 7. The ecliptic is the plane of Earth's orbit projected into space and the "highway" taken by the sun, Moon and planets as they orbit the sun. Although Mercury is lowest, it's only about 4.5 degrees from Venus and easy to find. Stellarium
This map shows the entire southern sky around 45 minutes to an hour before sunrise Sunday morning Feb. 7. The ecliptic is the plane of Earth’s orbit projected into space and the “highway” taken by the sun, Moon and planets as they orbit the sun. Although Mercury is lowest, it’s only about 4.5 degrees from Venus and easy to find. Stellarium

Find a location with as wide open a view as possible of the southeastern horizon. Jupiter, Mars and Saturn are plenty high up at that time and easy to spot, but Venus and Mercury hover only 5°-10° high. Both will pose no problem if you can get the trees and buildings out of the way! By the end of the coming week, Mercury will become challenging and then slip away.

Clear skies!

Yummy! ISS Astronauts Eat First Space-Grown Food

Video caption: That’s one small bite for a man, one giant leaf for mankind: NASA Astronauts Scott Kelly, Kjell Lindgren and Kimiya Yui of Japan sample the fruits of their labor after harvesting a crop of “Outredgeous” red romaine lettuce from the Veggie plant growth system on the International Space Station. Credit: NASA TV

Going where no astronauts have gone before, a trio of “space farmers” living aboard the International Space Station (ISS) have just become the first humans ever to eat food grown in space!

The gleeful munchers downed the freshly harvested crop of blood red colored “Outredgeous” red romaine lettuce salad during a live webcast today, Monday, August 10, direct from the Earth orbiting outpost soaring some 250 miles (400 km) above the home planet.

“Woo hoo ! …. Cheers!” exclaimed the eager Expedition 44 astronauts comprising Kjell Lindgren, Scott Kelly and Kimiya Yui, at the moment of truth, as they consumed the fruits of their own labor.

“It was one small bite for man, one giant leap for #NASAVEGGIE and our #JourneytoMars. #YearInSpace,” tweeted Kelly.

The momentous salad eating event took place at 12:26 EDT from beside the innovative and groundbreaking “Veggie” plant growth system, housed inside the European Space Agency’s Columbus laboratory located at the end of the US section of the ISS.

“That’s awesome!” said Lindgren with a broad smile – to the audible crunchy sounds of chewing on the freshly cut space lettuce.

“Tastes good!” replied Kelly, upon happily consuming the red leafed vegetable. He is now in the 5th month of his planned 1 Year mission aboard the ISS.

“Chomp! Our first veggies were harvested & consumed by astronauts in space!” tweeted NASA.

They all welcomed the opportunity to sample some freshly grown space produce from their miniature “ space farm.” Resident ISS crewmembers have been waiting for the “GO” to eat for some time.

“It tastes like arugula,” added Kelly, as they first tried the lettuce plain, as a control taste test of the virgin crop to get “the full effect.”

“It’s fresh,” Lindgren responded.

Then they doused quickly it with some oil and vinegar for flavor comparison.

“After trying the lettuce plain, @astro_kjell and @StationCDRKelly added oil & vinegar!” NASA tweeted.

Lindgren had carefully and methodically snipped away about half of the lettuce crop, on live NASA TV – which had grown to quite a size under the carefully maintained conditions inside “Veggie.”

He then cleaned “the leafy greens” by placing them between citric acid-based, food safe sanitizing wipes before the taste test.

After momentarily bagging the harvest, he distributed samples to his “tastemates” and the fun began.

“It’s wonderful to eat fresh food on the ISS, which is a lot of white and aluminum and it’s kind of a sterile environment,” said Kelly.

So this was quite different.

“It’s really fun to see green, growing things in here that we’re intentionally growing for sustenance. So we sure appreciate this payload and the opportunity to grow and eat and harvest these crops.”

The joyful trio saved some for the produce for their three Russian station colleagues to try later – Oleg Kononenko, Gennady Padalka and Mikhail Kornienko. Two of the Russian cosmonauts, Expedition 44 commander Padalka and Kelly’s 1 year crew mate Kornienko, were conducting a spacewalk today, simultaneously to the lettuce taste testing.

This "Outredgeous" red romaine lettuce was grown inside the Veggie plant growth system on the ISS and eaten on August 10, 2015 by the station crew.  The goal was to test hardware for growing vegetables and other plants to be harvested and eaten by astronauts in space.  Credits: NASA TV
This “Outredgeous” red romaine lettuce was grown inside the Veggie plant growth system on the ISS and eaten on August 10, 2015 by the station crew. The goal was to test hardware for growing vegetables and other plants to be harvested and eaten by astronauts in space. Credits: NASA TV

Another portion was set aside “to be packaged and frozen on the station until it can be returned to Earth for scientific analysis,” said NASA.

Although some vegetables have been grown before on the station, including prior crops of lettuce from “Veggie,” today marked the first time that any astronauts were “officially” granted “permission” to eat the fruits of their labor. Russian cosmonauts have eaten their station crops in the past. It’s a mystery whether any partner crewmates surreptitiously tasted some of the Russian produce.

And it not just for fun. In fact growing edible space food marks a significant new milestone towards enabling deep space human exploration, as explained by Kelly.

“Having lived on the space station for a while, I understand the logistical complexity of having people work in space for long periods and the supply chain that’s required to keep us going,” Kelly remarked.

“If we’re ever going to go to Mars someday, and we will, we’re going to have a spacecraft that is much more self sustainable with regard to its food supply.”

Experiments like these are critical for NASA’s plans to send humans on a “Journey to Mars” in the 2030s.

The “Journey to Mars” and back is likely to take well over two years and resupply is not possible. Crews will have to grow at least a portion of their own food and today’s experiment helps pave the human path to the Red Planet.

The “Veggie” experiment was developed by Orbital Technologies Corp. (ORBITEC) in Madison, Wisconsin.

The Veggie-01 apparatus was thoroughly tested at Kennedy before flight. It was delivered, along with two sets of pillows containing the romaine seeds and one set of zinnias, to the ISS by the SpaceX-3 Dragon cargo resupply mission launched in April 2014.

NASA astronaut Kjell Lindgren displays the  “Outredgeous" red romaine lettuce grown inside the Veggie plant growth system on the ISS prior to harvesting and consumption on August 10, 2015.  Credit: NASA TV
NASA astronaut Kjell Lindgren displays the “Outredgeous” red romaine lettuce grown inside the Veggie plant growth system on the ISS prior to harvesting and consumption on August 10, 2015. Credit: NASA TV

The lettuce crop inside the Veggie-01 plant pillows were activated by Kelly on July 8. They were grown for 33 days before being harvested today. The seeds had been stored dormant on the station for some 15 months since arriving aboard the SpaceX-3 Dragon, according to NASA.

The collapsible and expandable Veggie unit features a flat panel light bank that includes red, blue and green LEDs for plant growth and crew observation.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Veggie demonstration apparatus growing red romaine lettuce under LED lights in the Space Station Processing Facility at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Veggie demonstration apparatus growing red romaine lettuce under LED lights in the Space Station Processing Facility at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

How Low Can You Orbit?

The Earth’s atmosphere is a total drag, especially if you’re trying to orbit our planet. So how low can you go?

The Earth’s atmosphere is a total drag, especially if you’re trying to orbit our planet. It’s a drag. Get it? Atmospheric drag. Drag. Drag.

Hi, my name is Fraser Cain. I’m the publisher of Universe Today, and sometimes my team lets me write my own jokes.

I could have started off this episode with a reference to the “Adama Drop” in-atmosphere viper deployment from BSG, but instead I went with a Dad joke. My punishment is drawing attention to it.

So how low can you go? And if you go low enough, will Ludacris appear in the mirror?

We all appreciate the Earth’s atmosphere and everything it does for you. With all the breathing, and the staying warm and the not having horrible bruises all over your body from teeny space rocks pummeling us.

I’ve got an alternative view. The Earth’s atmosphere is your gilded pressurized oxygenated cage, and it’s the one thing keeping you from flying in space.And as we all know, this is your destiny.

Without the atmosphere, you could easily orbit the Earth, a few kilometers over its surface. Traveling around and around the planet like a person sized Moon. Wouldn’t that be great?

Well, it’s not going to happen. As you walk through the atmosphere, you bonk into all the air molecules. You don’t feel it when you’re moving at walking speed, but go faster, like an airplane, and it’ll rock you like a hurricane.

Without constant thrust pushing against the atmosphere, you’ll keep slowing down, and when you’re trying to orbit the planet, it’s a killer. Our atmosphere is like someone is constantly pushing the brakes on the fly in space party.

Credit

If you’ve played Kerbal Space Program, you know the faster you’re traveling, the higher you orbit. Conversely, the slower you travel, the lower you orbit. Travel slow enough and you’ll eat it, and by it, I meant as much planet as you can co-exist with after a high speed impact.

Being more massive means more momentum to push against the atmospheric drag. But with a large surface area, it acts like a parachute, slowing you down.

Hey, I know something that’s super massive with a huge surface area. The International Space Station orbits the planet at an altitude between 330 km and 435 km.

Why such a big range? The atmosphere is constantly pushing against the ISS as it orbits the planet. This slows down the space station’s speed and lowers its orbit. It wouldn’t last more than a couple of years if it wasn’t able to counteract the atmospheric drag.

The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA
The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA

Fortunately, the station has rockets to increase its speed, and a faster speed means a higher orbit. It can even get assistance from docked spacecraft. If the space station were to go any lower, it would require higher and higher amounts of thrust to prevent re-entry into the Earth’s atmosphere.

So what are the limits? Anything below 160 km altitude will essentially re-enter almost immediately, as it’s buffeted by the thicker atmosphere. You really wouldn’t last more than a few hours at that altitude, but above 800 km you could orbit for more than 100 years.

Geosynchronous satellites that orbit the Earth and transmit our television signals are at an altitude of about 42,000 km. Satellites that high are never coming back down. Well, maybe not never.

Want to enjoy your orbital experience? Make sure you get yourself to an altitude of at least 300 km, 400 km just to be safe. You should shoot for more like 800 km if you just don’t want to worry about things for a while.

Knowing these risks, would you be willing to travel to orbit with current technology? Tell us in the comments below.

Record Setting Italian Female Astronaut and ISS Crewmates Land in Sunny Kazakhstan

An international crew comprising a Russian cosmonaut, a US astronaut and an Italian astronaut who accomplished a record setting flight for time in space by a female, departed the International Space Station (ISS) earlier today, June 11, and safely landed in sunny and warm Kazakhstan tucked inside their Russia Soyuz ferry ship after a successful and extended 199-day mission devoted to science and station upgrades.

The multinational trio comprising Expedition 43 Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency) undocked from the orbiting outposts Russian Rassvet module as scheduled in the Soyuz TMA-15M spaceship at 6:20 a.m. EDT while soaring some 250 miles (400 kilometers) above Mongolia.

A four-minute 40-second deorbit burn at 8:51 a.m EDT slowed the craft for the fiery reentry into the Earth’s atmosphere.

The crew touched down just a few hours after undocking at 9:44 a.m. EDT (7:44 p.m., Kazakh time), southeast of the remote town of Dzhezkazgan on the steppes of Kazakhstan, about an hour and a half before sundown in delightfully summer weather. Temperatures today were in the 80s, but they are ‘bone chilling’ in the winter months.

Expedition 43 Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency) touched down at 9:44 a.m. EDT (7:44 p.m., Kazakh time), southeast of the remote town of Dzhezkazgan in Kazakhstan.  Credits: NASA TV
Expedition 43 Commander Terry Virts of NASA, Flight Engineers Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) and Samantha Cristoforetti of ESA (European Space Agency) touched down at 9:44 a.m. EDT (7:44 p.m., Kazakh time), southeast of the remote town of Dzhezkazgan in Kazakhstan. Credits: NASA TV

The Expedition 43 flight was extended at the last minute due to the surprise launch failure of a Russian rocket carrying a station bound Progress resupply ship in late April.

The Progress 59 cargo vessel, also known as Progress M-27M, spun wildly out of control as it separated from the Soyuz-2.1A carrier rocket. The freighter and all its 2.5 tons of contents fpr the crew were destroyed during an uncontrolled plummet as its crashed back to Earth on May 8.

The Soyuz/Progress 59 failure had far reaching consequences and resulted in a postponement of virtually all Russian crew and cargo flights to the ISS for the remainder of 2015, as announced this week by Roscosmos, the Russian Federal Space Agency.

One result is that Cristoforetti now holds the single mission record for a female astronaut, of nearly 200 days.

Expedition 43 was extended by about a month in the wake of the launch failure of the Progress 59 cargo vessel, which quickly cascaded into an extended mission from its originally planned length of about 170 days to 199+ days.

The Soyuz is only certified to stay on orbit for 200 days. So the return home delayed as much as possible to minimize the time when the ISS reverts to only a three person crew – and consequently reduced time for research.

This past weekend on June 6, Cristoforetti surpassed the female astronaut record of 194 days, 18 hours and 2 minutes established by NASA astronaut Sunita Williams on a prior station flight back in 2007.

Cristoforetti, of the European Space Agency (ESA), is on her first ever space flight also counts as she also counts as Italy’s first female astronaut.

The station departure and parachute assisted soft landing was shown during a live webcast on NASA TV.

“The landing was on time and on target after over 199 days in space,” said NASA commentator Rob Navius.

“Everything went by the book for an on target touchdown. The crew is safely back on Earth!”

Flight Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as SpaceX Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
Flight Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as SpaceX Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

In the final stages of the return to Earth, the Soyuz descent module glided down safely using a single mammoth orange and white parachute, aided by braking rockets in the final moments just a few feet above ground.

The Soyuz landed upright, which eased the extraction of the crew. Russian recovery team members hoisted all three up and out from the cramped capsule.

Soyuz commander Anton Shkaplerov was hauled up first, followed by Samantha Cristoforetti and finally Terry Virts.

All three crewmembers were healthy and happy, each signaling their elation with a joyous ‘thumbs up.’

After preliminary medical checks, the crew were flown by helicopter to a staging base at Karaganda. From there they split up. Shkaplerov heads back to Moscow and Star City. Cristoforetti and Virts fly to Mission Control in Houston.

During their time aloft, the crew completed several critical spacewalks, technology demonstrations, and hundreds of scientific experiments spanning multiple disciplines, including human and plant biology,” according to NASA.

Among the research experiments conducted were “participation in the demonstration of new, cutting-edge technologies such as the Synthetic Muscle experiment, a test of a new polymer that contracts and expands similar to real muscle. This technology has the potential for future use on robots, enabling them to perform tasks that require considerable dexterity but are too dangerous to be performed by humans in space.”

“The crew engaged in a number of biological studies, including one investigation to better understand the risks of in-flight infections and another studying the effects microgravity has on bone health during long-duration spaceflight. The Micro-5 study used a small roundworm and a microbe that causes food poisoning in humans to study the risk of infectious diseases in space, which is critical for ensuring crew health, safety and performance during long-duration missions. The Osteo-4 study investigated bone loss in space, which has applications not only for astronauts on long-duration missions, but also for people on Earth affected by osteoporosis and other bone disorders.”

Three cargo flights also arrived at the ISS carrying many tons of essential supplies, research equipment, science experiments, gear, spare parts, food, water, clothing.

The resupply freighters included the Russian Progress in February 2015 as well as two SpaceX Dragon cargo ships on the CRS-5 and CRS-6 flights in January and April.

Expedition 43 commander Terry Virts of NASA, left, cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), center, and Italian astronaut Samantha Cristoforetti from European Space Agency (ESA) sit in chairs outside the Soyuz TMA-15M spacecraft just minutes after they landed in a remote area near the town of Zhezkazgan, Kazakhstan on Thursday, June 11, 2015. Virtz, Shkaplerov, and Cristoforetti are returning after more than six months onboard the International Space Station where they served as members of the Expedition 42 and 43 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 43 commander Terry Virts of NASA, left, cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), center, and Italian astronaut Samantha Cristoforetti from European Space Agency (ESA) sit in chairs outside the Soyuz TMA-15M spacecraft just minutes after they landed in a remote area near the town of Zhezkazgan, Kazakhstan on Thursday, June 11, 2015. Virts, Shkaplerov, and Cristoforetti are returning after more than six months onboard the International Space Station where they served as members of the Expedition 42 and 43 crews. Photo Credit: (NASA/Bill Ingalls)

With the return of Virts crew, the new Expedition 44 begins and comprises NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko, the two members of the first “ISS 1 Year Mission” as well as cosmonaut Gennady Padalka.

Padalka now assumes command of the station for a record setting fourth time. And he’ll soon be setting another record. In late June, he will break the all time record for cumulative time in space currently held by cosmonaut Sergei Krikalev of 803 days on six space flights.

When Padalka returns to Earth around September 10 in the Soyuz TMA-16M ship, that brought the 1 Year crew to the ISS, he will have been in space for a grand total of over 877 days over five flights.

The next cargo ferry flight involves NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight.

Dragon CRS-7 is now slated for liftoff on June 26. Watch for my onsite reports from KSC.

The Dragon will be carrying critical US equipment, known as the International Docking Adapter (IDA), enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters – due for first crewed launches in 2017.

The most recent unmanned Dragon cargo CRS-6 mission concluded with a Pacific Ocean splashdown on May 21.

The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA
The International Space Station, photographed by the crew of STS-132 as they disembarked. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Expedition 43 crews rests post landing  on Thursday, June 11, 2015, Terry Virts of NASA, comprising cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), and record setting Italian astronaut Samantha Cristoforetti from European Space Agency (ESA).  Credit: NASA
Expedition 43 crews rests post landing on Thursday, June 11, 2015, Terry Virts of NASA, comprising cosmonaut Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos), and record setting Italian astronaut Samantha Cristoforetti from European Space Agency (ESA). Credit: NASA

Russia Postpones ISS Crew Rotations Following Progress Freighter Failure

Russia and its International Space Station (ISS) partners have prudently decided to postpone the scheduled upcoming crew rotations, involving departures and launches of station crews, in the wake of the failure of the Russian Progress 59 freighter that spun out of control soon after blastoff on April 28 and was destroyed during an uncontrolled plummet back to Earth on Friday, May 8.

The schedule shifting, whose possibility was reported here over the weekend and confirmed on Tuesday, May 12 by NASA and Roscosmos, literally came barely a day before the planned return to Earth on Wednesday, May 13 of the three person crew comprising of NASA astronaut and current station commander Terry Virts and flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos. The trio have been working and living aboard the complex since November 2014.

The return of Virts, Cristoforetti and Shkaplerov is now targeted for early June, according to official statements from NASA, ESA and Roscosmos, the Russian space agency. That’s about a month later than the originally planned 171 day mission, in the wake of the failed Progress cargo ship that burned up on reentry.

Although an exact date has not been specified, sources indicate a tentative return target of around June 11.

“The partner agencies agreed to adjust the schedule after hearing the Russian Federal Space Agency’s (Roscosmos) preliminary findings on the recent loss of the Progress 59 cargo craft,” said NASA in a statement. “The exact dates have not yet been established, but will be announced in the coming weeks.”

If that new return date holds, ESA’s Samantha Cristoforetti will become the woman to fly the longest in space, eclipsing the current record holder, NASA astronaut Sunita Williams.

"There's coffee in that nebula"... ehm, I mean... in that #Dragon.  Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

Blastoff of their replacement crew on the next planned manned Soyuz launch on May 26 from the Baikonur Cosmodrome in Kazakhstan has also been delayed, for about two months most likely to late July. That Expedition 44 crew comprises Russian cosmonaut Oleg Kononenko, Japanese astronaut Kimiya Yui and NASA astronaut Kjell Lindgren.

A rotating international crew of six astronauts and cosmonauts currently serve aboard the ISS. The delayed return of Virts crew from Expedition 43 will lessen the time when the ISS is staffed by a reduced crew of three, which significantly dampens the time allotted to science research.

A Russian state commission investigation board appointed by Roscosmos, is still seeking to determine the cause of the Progress 59 malfunction which occurred right around the time of the separation from its Soyuz-2.1A carrier rockets third stage following blastoff from the Baikonur space center in Kazakhstan.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

A preliminary accident report from the state commission was planned for May 13. But investigators need more time to determine the root cause of the Progress 59 (also known as Progress M-27M) mishap.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka will remain aboard the station after the Virts crew returns to begin Expedition 44.

Roscosmos is also working to speed up the launch of the next unmanned Progress 60 (M-28M), potentially from August to early July. But that hinges on the outcome of the state commission investigation.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

The 7 ton Progress vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, food, water, oxygen, gear and replaceable parts for the station’s life support systems.

NASA officials say that the current ISS Expedition 43 six person crew is in no danger. The station has sufficient supplies to last until at least the fall of 2015, even if no other supplies arrive in the meantime.

Also in the mix is the launch of NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 had been slated for liftoff no earlier than June 19. But that date could slip as well.

The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Last Minute Scrub for SpaceX Dragon Launch; Try Again Friday for Historic 1st Stage Landing

An actuator that was “behaving strangely” on the SpaceX Falcon 9’s upper stage caused a last minute scrub for Tuesday’s attempt to launch a Dragon capsule to the International Space Station, as well as the first try at an historic first stage landing on a floating platform in the Atlantic Ocean.


SpaceX will try again on Friday, January 9, 2014 at 5:09 a.m. EST. Like today’s attempt, there will be only an instantaneous launch window available, meaning that the blastoff must proceed at that exact instant. Any delays due to technical issues or weather would force further delays.

This is the commercial space company’s fifth resupply mission to the ISS and the unmanned cargo freighter is loaded with more than 5,108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the space station.

The “experiment” that has attracted the most attention, however, is the attempt to land the first stage of the two-stage rocket on a floating platform in the Atlantic Ocean, approximately 320 km (200 miles) off the coast of Florida.

This is the first attempt at such a landing. SpaceX has conducted numerous successful soft landing tests on land, and done several touchdowns on the ocean’s surface.

Elon Musk has estimated the odds of success at the landing attempt at about 50% at best.

“It’s an experiment,” said Hans Koenigsmann, VP of Mission Assurance at SpaceX, speaking at a media briefing on Jan. 5 at the Kennedy Space Center. “There’s a certain likelihood that this will not work out right, that something will go wrong.” He also added that the landing on the off shore barge is just a secondary objective of SpaceX, not NASA.

Many analysts say a successful landing maneuver would mark a significant step toward making rockets more reusable, which would help cut costs. But others caution that even if this first attempt is successful, we shouldn’t expect to see regular airline-like reuse and large cost drops anytime soon.