NASA Orders First Ever Commercial Human Spaceflight Mission from Boeing

The restoration of America’s ability to launch American astronauts to the International Space Station (ISS) from American soil in 2017 took a major step forward when NASA ordered the first ever commercial human spaceflight mission from Boeing.

NASA’s Commercial Crew Program (CCP) office gave the first commercial crew rotation mission award to the Boeing Company to launch its CST-100 astronaut crew capsule to the ISS by late 2017, so long as the company satisfactorily meets all of NASA’s human spaceflight certification milestones.

Thus begins the history making new era of commercial human spaceflight.

“This occasion will go in the books of Boeing’s nearly 100 years of aerospace and more than 50 years of space flight history,” said John Elbon, vice president and general manager of Boeing’s Space Exploration division, in a statement.

“We look forward to ushering in a new era in human space exploration.”

Boeing was awarded a $4.2 Billion contract in September 2014 by NASA Administrator Charles Bolden to complete development and manufacture of the CST-100 ‘space taxi’ under the agency’s Commercial Crew Transportation Capability (CCtCap) program and NASA’s Launch America initiative.

“Final development and certification are top priority for NASA and our commercial providers, but having an eye on the future is equally important to the commercial crew and station programs,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“Our strategy will result in safe, reliable and cost-effective crew missions.”

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry four to seven person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The CST-100 will be carried to low Earth orbit atop a manrated United Launch Alliance Atlas V rocket launching from Cape Canaveral Air Force Station, Florida.

Boeing will first conduct a pair of unmanned and manned orbital CST-100 test flights earlier in 2017 in April and July, prior to the operational commercial crew rotation mission to confirm that their capsule is ready and able and met all certification milestone requirements set by NASA.

“Orders under the CCtCap contracts are made two to three years prior to the missions to provide time for each company to manufacture and assemble the launch vehicle and spacecraft. In addition, each company must successfully complete the certification process before NASA will give the final approval for flight,” says NASA.

Boeing got the mission order from NASA because they have “successfully demonstrated to NASA that the Commercial Crew Transportation System has reached design maturity appropriate to proceed to assembly, integration and test activities.”

Boeing recently completed the fourth milestone in the CCtCap phase dubbed the delta integrated critical design review.

Read my earlier exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander and who now leads Boeings CST-100 program; here and here.

The commercial crew program is designed to return human spaceflight launches to the United States and end our sole source reliance on Russia and the Soyuz capsule.

ISS Soyuz crew rotation missions are currently on hold due to the recent launch failure of the Russian Soyuz booster and Progress resupply vessel earlier this month.

Since the forced retirement of NASA’s shuttle orbiters in 2011, US astronauts have been totally dependent on the Russians for trips to space and back.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

SpaceX also received a NASA award worth $2.6 Billion to build the Crew Dragon spacecraft for launch atop the firms man-rated Falcon 9 rocket.

SpaceX conducted a successful Pad Abort Test of the Crew Dragon on May 6, fulfilling a key NASA milestone, as I reported here.

NASA will order a commercial mission from SpaceX sometime later this year. At a later date NASA will decide which company will fly the first commercial crew rotation mission to the ISS.

Both the CST-100 and Crew Dragon will typically carry a crew of four or five NASA or NASA-sponsored crew members, along with some 220 pounds of pressurized cargo. Each will also be capable of carrying up to seven crew members depending on how the capsule is configured.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

The spacecraft will be capable to remaining docked at the station for up to 210 days and serve as an emergency lifeboat during that time.

The NASA CCtCAP contracts call for a minimum of two and a maximum potential of six missions from each provider.

The station crew will also be enlarged to seven people that will enable a doubling of research time.

“Commercial Crew launches are critical to the International Space Station Program because it ensures multiple ways of getting crews to orbit,” said Julie Robinson, International Space Station chief scientist.

“It also will give us crew return capability so we can increase the crew to seven, letting us complete a backlog of hands-on critical research that has been building up due to heavy demand for the National Laboratory.”

NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA
NASA’s Commercial Crew Program initiative aims to restore US access to the ISS. Credit: NASA

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

Russia Postpones ISS Crew Rotations Following Progress Freighter Failure

Russia and its International Space Station (ISS) partners have prudently decided to postpone the scheduled upcoming crew rotations, involving departures and launches of station crews, in the wake of the failure of the Russian Progress 59 freighter that spun out of control soon after blastoff on April 28 and was destroyed during an uncontrolled plummet back to Earth on Friday, May 8.

The schedule shifting, whose possibility was reported here over the weekend and confirmed on Tuesday, May 12 by NASA and Roscosmos, literally came barely a day before the planned return to Earth on Wednesday, May 13 of the three person crew comprising of NASA astronaut and current station commander Terry Virts and flight engineers Samantha Cristoforetti of ESA (European Space Agency) and Anton Shkaplerov of Roscosmos. The trio have been working and living aboard the complex since November 2014.

The return of Virts, Cristoforetti and Shkaplerov is now targeted for early June, according to official statements from NASA, ESA and Roscosmos, the Russian space agency. That’s about a month later than the originally planned 171 day mission, in the wake of the failed Progress cargo ship that burned up on reentry.

Although an exact date has not been specified, sources indicate a tentative return target of around June 11.

“The partner agencies agreed to adjust the schedule after hearing the Russian Federal Space Agency’s (Roscosmos) preliminary findings on the recent loss of the Progress 59 cargo craft,” said NASA in a statement. “The exact dates have not yet been established, but will be announced in the coming weeks.”

If that new return date holds, ESA’s Samantha Cristoforetti will become the woman to fly the longest in space, eclipsing the current record holder, NASA astronaut Sunita Williams.

"There's coffee in that nebula"... ehm, I mean... in that #Dragon.  Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA
Engineer Samantha Cristoforetti of the European Space Agency in Star Trek uniform as Dragon arrives at the International Space Station on April 17, 2015. Credit: NASA

Blastoff of their replacement crew on the next planned manned Soyuz launch on May 26 from the Baikonur Cosmodrome in Kazakhstan has also been delayed, for about two months most likely to late July. That Expedition 44 crew comprises Russian cosmonaut Oleg Kononenko, Japanese astronaut Kimiya Yui and NASA astronaut Kjell Lindgren.

A rotating international crew of six astronauts and cosmonauts currently serve aboard the ISS. The delayed return of Virts crew from Expedition 43 will lessen the time when the ISS is staffed by a reduced crew of three, which significantly dampens the time allotted to science research.

A Russian state commission investigation board appointed by Roscosmos, is still seeking to determine the cause of the Progress 59 malfunction which occurred right around the time of the separation from its Soyuz-2.1A carrier rockets third stage following blastoff from the Baikonur space center in Kazakhstan.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

A preliminary accident report from the state commission was planned for May 13. But investigators need more time to determine the root cause of the Progress 59 (also known as Progress M-27M) mishap.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka will remain aboard the station after the Virts crew returns to begin Expedition 44.

Roscosmos is also working to speed up the launch of the next unmanned Progress 60 (M-28M), potentially from August to early July. But that hinges on the outcome of the state commission investigation.

File photo of a Russian Progress cargo freighter. Credit: Roscosmos
File photo of a Russian Progress cargo freighter. Credit: Roscosmos

The 7 ton Progress vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, food, water, oxygen, gear and replaceable parts for the station’s life support systems.

NASA officials say that the current ISS Expedition 43 six person crew is in no danger. The station has sufficient supplies to last until at least the fall of 2015, even if no other supplies arrive in the meantime.

Also in the mix is the launch of NASA’s next contracted unmanned Dragon cargo mission by commercial provider SpaceX on the CRS-7 flight. Dragon CRS-7 had been slated for liftoff no earlier than June 19. But that date could slip as well.

The Dragon will carry critical US equipment enabling docking by the SpaceX Crew Dragon and Boeing CST-100 astronaut transporters.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Russia’s Out of Control Progress Freighter Doomed to Fiery Finale Friday

Russia’s out-of-control Progress 59 cargo freighter is doomed to a fiery finale overnight Friday, May 8, according to Roscosmos, the Russian Space Agency.

The errant spaceship is expected to fall back to Earth and reenter the atmosphere early in the morning Moscow time following the latest orbital analysis by Roscosmos.

“The time window for the failed Progress spacecraft reentry in the Earth’s atmosphere was changed to a span between 01.13 a.m. and 04.51 a.m. Moscow time on May 8, according to Russia’s space agency Roscosmos,” according to the latest update today, May 7, from the Russian Sputnik news outlet.

According to a Roscosmos source, the unmanned Progress 59, also known as M-27M , would most likely make the atmospheric reentry over the Indian Ocean.

Roscosmos said in a statement that Progress 59 “will cease to exist” on Friday.

Most of the debris is expected to burn up. But any remaining fragments are likely to hit north of Madagascar.

Russian mission controllers lost control of the Progress 59 spacecraft ship – bound for the International Space Station (ISS) on a routine resupply mission – shortly after its otherwise successful launch on April 28 from the Baikonur space center in Kazakhstan atop a Soyuz-2.1A carrier rocket.

Soon after detaching from the rockets third stage, it began to spin out of control at about 1.8 times per second, as seen in a video transmitted from the doomed ship.

After control could not be reestablished, all hope of docking with the ISS was abandoned by Roscosmos.

Here’s a short video taken by the spinning Progress with NASA commentary:

The 7 ton vehicle was loaded with 2.5 tons of supplies for the ISS and the six person Expedition 43 crew. Items included personal mail for the crew, scientific equipment, as well as replaceable parts for the station’s life support systems and a stockpile of water and oxygen, according to Russia Today.

The Progress spacecraft is also loaded with a significant amount of fuel as it orbits Earth at an inclination of 51.6 degrees to the equator. This carries it over most of the populated world between 51.6 degrees north and south latitudes. But most of the area is over unpopulated oceans, making the chances of danger from falling debris very small.

The latest ground track reentry prediction for the Progress 59 (M-27M)  spacecraft showing orbital path around Earth as of May 7, 2015. Note: subject to change.  Credit: Aerospace Corp.
The latest ground track reentry prediction for the Progress 59 (M-27M) spacecraft showing orbital path around Earth as of May 7, 2015. Note: subject to change. Credit: Aerospace Corp.

To date the Progress vehicle have been highly reliable. The last failure occurred in 2011, shortly after the retirement of NASA’s Space Shuttle orbiters in July 2011.

Roscosmos has established an investigation board to determine the cause of the Progress failure and any commonalities it might have with manned launches of the Soyuz rocket and capsule.

“The conclusions are to be made by May 13, 2015,” according to a Roscosmos statement.

The potential exists for a delay in the next planned manned Soyuz launch with a three person international crew later on May 26 from the Baikonur Cosmodrome in Kazakhstan.

The ISS crew is in no danger and has sufficient supplies to last until at least September.

Besides the Russian Progress cargo ship, the ISS is resupplied by the commercial US SpaceX Dragon and Orbital Sciences Cygnus vessels and the Japanese HTV. ESA’s ATV has been retired after 5 flights.

The next Falcon 9 launch carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS is slated for mid-June. The most recent Dragon was launched on the CRS-6 mission on April 14, 2015.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

The last Orbital Sciences launch of an Antares rocket with the Orb-3 Cygnus resupply ship ended in a catastrophic explosion just seconds after liftoff on October 28, 2014.

The ISS lifeline hangs by a delicate thread.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

President Obama Salutes NASA, Astronaut Kelly, and 1 Year ISS Mission at State of the Union Address

President Obama gave a shout out to NASA Astronaut Scott Kelly and his upcoming 1 year mission to the International Space Station at the 2015 State of the Union address to the US Congress on Tuesday evening, Jan. 20, 2015.

Obama wished Kelly (pictured above in the blue jacket) good luck during his address and told him to send some photos from the ISS via Instagram. Kelly was seated with the First Lady, Michelle Obama, during the speech on Capitol Hill.

The TV cameras focused on Kelly and he was given a standing ovation by the Congress and the President.

Obama also praised Kelly’s flight and the recent Dec. 5, 2014, launch of NASA’s Orion deep space capsule as “part of a re-energized space program that will send American astronauts to Mars.”

Watch this video of President Obama hailing NASA and Scott Kelly:



Video Caption: President Obama recognizes NASA and Astronaut Scott Kelly at 2015 State of the Union Address. Credit: Congress/NASA

Here’s a transcript of President Obama’s words about NASA, Orion, and Scott Kelly’s 1 Year ISS mission:

“Pushing out into the Solar System not just to visit, but to stay. Last month, we launched a new spacecraft as part of a re-energized space program that will send American astronauts to Mars. In two months, to prepare us for those missions, Scott Kelly will begin a year-long stay in space. Good luck, Captain and make sure to Instagram it.”

In late March, Astronaut Scott Kelly will launch to the International Space Station and become the first American to live and work aboard the orbiting laboratory for a year-long mission.

Scott Kelly and Russian Cosmonaut Mikhail Kornienko, both veteran spacefliers, comprise the two members of the 1 Year Mission crew.

Normal ISS stays last for about a six month duration.

NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise  the first ever ISS 1 Year Crew
NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko comprise the first ever ISS 1 Year Crew

No American has ever spent anywhere near a year in space. 4 Russian cosmonauts conducted long duration stays of about a year or more in space aboard the Mir Space Station in the 1980s and 1990s.

Together with Russian cosmonaut Gennady Padalka, Kelly and Kornienko will launch on a Russian Soyuz capsule from the Baikonur Cosmodrome as part of Expedition 44.

Kelly and Kornienko will stay aboard the ISS until March 2016.

They will conduct hundreds of science experiments focusing on at least 7 broad areas of investigation including medical, psychological, and biomedical challenges faced by astronauts during long-duration space flight.

During the 2015 State of the Union Address on Jan 20, President Obama lauds NASA’s Orion Spacecraft and our "re-energized space program."  Credit: NASA
During the 2015 State of the Union Address on Jan 20, President Obama lauds NASA’s Orion Spacecraft and our “re-energized space program.” Credit: NASA

Kelly was just featured in a cover story at Time magazine.

Here’s an online link to the Time magazine story : http://ti.me/1w25Qgo

@TIME features @StationCDRKelly ‘s 1-year-long mission in it’s 2015: Year Ahead issue. http://ti.me/1w25Qgo
@TIME features @StationCDRKelly ‘s 1-year-long mission in its 2015: Year Ahead issue. http://ti.me/1w25Qgo

Orion flew a flawless inaugural test flight when it thundered to space on Dec. 5, 2014, atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Orion launched on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that carried the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Kelly’s flight will pave the way for NASA’s goal to send astronaut crews to Mars by the 2030s. They will launch in the Orion crew vehicle atop the agency’s mammoth new Space Launch System (SLS) rocket, simultaneously under development.

Good luck to Kelly and Kornienko!!

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Astronauts Safely Back inside US Space Station Segment after False Ammonia Leak Alarm

Nearly twelve hours after the threat of a leak of toxic ammonia forced the crew into a middle of the night evacuation from the US side of the International Space Station this morning (Jan. 14) and a hatch closure, top level managers from the partner space agencies gave the all clear and allowed the astronauts and cosmonauts to reopen access to the American portion of the orbiting outpost.

The six person crew hailing from the US, Italy and Russia were allowed to open the sealed hatch to the U.S. segment later this afternoon after it was determined that the ammonia leak was quite fortunately a false alarm.

No ammonia leak was actually detected. But the crew and mission control had to shut down some non essential station systems on the US segment in the interim.

All the Expedition 42 crew members were safe and in good health and never in danger, reported NASA.

The station crews and mission control teams must constantly be prepared and train for the unexpected and how to deal with potential emergencies, such as today’s threat of a serious chemical leak.

After a thorough review of the situation by the International Space Station mission management team, the crew were given the OK by flight controllers to head back.

They returned inside at 3:05 p.m. EST. Taking no chances, they wore protective masks and sampled the cabin atmosphere and reported no indications of any ammonia.

Fears that a leak had been detected resulted from the sounding of an alarm at around 4 a.m. EST.

The alarm forced Expedition 42 station commander Barry Wilmore and Flight Engineer Terry Virts of NASA and Flight Engineer Samantha Cristoforetti of the European Space Agency to don protective gas masks and move quickly into the Russian segment, sealing the hatch behind them to the US segment.

Inside the Russian segment, they joined the remainder of Expedition 42, namely cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia, also living and working aboard the ISS and rounding out the crew of four men and two women.

he International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. Credit: NASA
The International Space Station as seen by the departing STS-134 crew aboard space shuttle Endeavour in May 2011. US segment on top in this view. Credit: NASA

“The alarm is part of the environmental systems software on the station designed to monitor the cabin’s atmosphere. At the same time, the station’s protection software shut down one of two redundant cooling loops (Thermal Control System Loop B),” NASA said in an update.

Ammonia is a toxic substance used as a coolant in the stations complex cooling system that is an essential requirement to continued operation of the station.

Ammonia is a gas at room temperature that is extremely dangerous to inhale or when it comes in contact with skin, eyes and internal organs.

Precautions must be taken if a leak is feared in a confined space such as the ISS. It has about the same habitable volume as a four bedroom house.

As a professional chemist, I’ve worked frequently with ammonia in research and development labs and manufacturing plants and know the dangers firsthand. It can cause severe burns and irritations and worse.

There have been prior ammonia leaks aboard the ISS facility that forced a partial evacuation similar to today’s incident.

The ISS has been continuously occupied by humans for 15 years.

In the case of a life threatening emergency, the crew can rapidly abandon the station aboard the two docked Russian Soyuz capsules. They hold three persons each and serve as lifeboats.

Fortunately, the perceived ammonia leak this morning was not real and apparently was caused by a false alarm.

“This morning’s alarm is suspected to have been caused by a transient error message in one of the station’s computer relay systems, called a multiplexer-demultiplexer. A subsequent action to turn that relay box off and back on cleared the error message and the relay box is reported by flight controllers to be in good operating condition,” according to a NASA statement.

“Meanwhile, flight controllers are continuing to analyze data in an effort to determine what triggered the alarm that set today’s actions in motion.”

“Work to reactivate cooling loop B on the station will continue throughout the night and into the day Thursday. The crew members are expected to resume a normal complement of research activities on Thursday as well.”

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
This view shows the US side of the ISS that was evacuated today, Jan. 14, 2015, by the crew due to possible ammonia leak. The SpaceX CRS-5 Dragon is attached to the Harmony module. Credit: NASA TV

The evacuation came just two days after a commercial SpaceX Dragon cargo freighter successfully rendezvoused and berthed at the station on Monday, Jan. 12.

The crew had just opened the hatch to Dragon and begun unloading the goodies stored aboard.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

ISS, NASA and US National Security dependent on Russian & Ukrainian Rocketry Amidst Crimean Crisis

The International Space Station (ISS) in low Earth orbit
The sole way for every American and station partner astronaut to fly to space and the ISS is aboard the Russian Soyuz manned capsule since the retirement of NASA’s Space Shuttles in 2011. There are currently NO alternatives to Russia’s Soyuz. Credit: NASA[/caption]

Virtually every aspect of the manned and unmanned US space program – including NASA, other government agencies, private aerospace company’s and crucially important US national security payloads – are highly dependent on Russian & Ukrainian rocketry and are therefore potentially at risk amidst the current Crimea crisis as tensions flared up dangerously in recent days between Ukraine and Russia with global repercussions.

The International Space Station (ISS), astronaut rides to space and back, the Atlas V and Antares rockets and even critical U.S. spy satellites providing vital, real time intelligence gathering are among the examples of programs that may be in peril if events deteriorate or worse yet, spin out of control.

The Crimean confrontation and all the threats and counter threats of armed conflicts and economic sanctions shines a spotlight on US vulnerabilities regarding space exploration, private industry and US national security programs, missions, satellites and rockets.

The consequences of escalating tensions could be catastrophic for all sides.

Many Americans are likely unaware of the extent to which the US, Russian and Ukrainian space programs, assets and booster rockets are inextricably intertwined and interdependent.

First, let’s look at America’s dependency on Russia regarding the ISS.

The massive orbiting lab complex is a partnership of 15 nations and five space agencies worldwide – including Russia’s Roscosmos and the US NASA. The station is currently occupied by a six person crew of three Russians, two Americans and one Japanese.

Since the forced retirement of NASA’s space shuttle program in 2011, America completely lost its own human spaceflight capability. So now the only ticket for astronauts to space and back is by way of the Russian Soyuz capsule.

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA
Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

American and station partner astronauts are 100% dependent on Russia’s three seat Soyuz capsule and rocket for rides to the ISS.

Russia has a monopoly on reaching the station because the shuttle was shut down by political ‘leaders’ in Washington, DC before a new U.S. manned space system was brought online.

And congressional budget cutters have repeatedly slashed NASA’s budget, thereby increasing the gap in US manned spaceflight launches from American soil by several years already.

Congress was repeatedly warned of the consequences by NASA and responded with further reductions to NASA’s budget.

In a continuation of the normal crew rotation routines, three current crew members are set to depart the ISS in a Soyuz and descend to Earth on Monday, March 10.

Coincidentally, one of those Russian crew members, Oleg Kotov, was actually born in Crimea when it was part of the former Soviet Union.

A new three man crew of two Russians and one American is set to blast off in their Soyuz capsule from Russia’s launch pad in Kazakhstan on March 25.

The U.S. pays Russia $70 million per Soyuz seat under the most recent contact, while American aerospace workers are unemployed.

The fastest and most cost effective path to restore America’s human spaceflight capability to low Earth orbit and the ISS is through NASA’s Commercial Crew Program (CCP) seeking to develop private ‘space taxis’ with Boeing, SpaceX and Sierra Nevada.

Alas, Congress has sliced NASA’s CCP funding request by about 50% each year and the 1st commercial crew flight to orbit has consequently been postponed by more than three years.

So it won’t be until 2017 at the earliest that NASA can end its total dependence on Russia’s Soyuz.

A sensible policy to eliminate US dependence on Russia would be to accelerate CCP, not cut it to the bone, especially in view of the Crimean crisis which remains unresolved as of this writing.

If U.S. access to Soyuz seats were to be cut off, the implications would be dire and it could mean the end of the ISS.

When NASA Administrator Chales Bolden was asked about contingencies at a briefing yesterday, March 4, he responded that everything is OK for now.

“Right now, everything is normal in our relationship with the Russians,” said Bolden.

“Missions up and down are on target.”

“People lose track of the fact that we have occupied the International Space Station now for 13 consecutive years uninterrupted, and that has been through multiple international crises.”

“I don’t think it’s an insignificant fact that we are starting to see a number of people with the idea that the International Space Station be nominated for the Nobel Peace Prize.”

But he urged Congress to fully fund CCP and avoid still more delays.

“Let me be clear about one thing,” Bolden said.

“The choice here is between fully funding the request to bring space launches back to the US or continuing millions in subsidies to the Russians. It’s that simple. The Obama administration chooses investing in America, and we believe Congress will choose this course as well.”

NASA Administrator Charles Bolden discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Now let’s examine a few American rockets which include substantial Russian and Ukrainian components – without which they cannot lift one nanometer off the ground.

The Atlas V rocket developed by United Launch Alliance is the current workhorse of the US expendable rocket fleet.

Coincidentally the next Atlas V due to blastoff on March 25 will carry a top secret spy satellite for the U.S. National Reconnaissance Office (NRO).

The Atlas V first stage however is powered by the Russian built and supplied RD-180 rocket engine.

Several Air Force – DOD satellites are launched on the Atlas V every year.

Many NASA probes also used the Atlas V including Curiosity, MAVEN, Juno and TDRS to name just a few.

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

What will happen to shipments of the dual nozzle, dual chamber RD-180’s manufactured by Russia’s NPO Energomesh in the event of economic sanctions or worse? It’s anyone’s guess.

ULA also manufactures the Delta IV expendable rocket which is virtually all American made and has successfully launched numerous US national security payloads.

The Antares rocket and Cygnus resupply freighter developed by Orbital Sciences are essential to NASA’s plans to restore US cargo delivery runs to the ISS – another US capability lost by voluntarily stopping shuttle flights. .

Orbital Sciences and SpaceX are both under contract with NASA to deliver 20,000 kg of supplies to the station. And they both have now successfully docked their cargo vehicles – Cygnus and Dragon – to the ISS.

The first stage of Antares is built in Ukraine by the Yuzhnoye Design Bureau and Yuzhmash.

And the Ukrainian booster factory is located in the predominantly Russian speaking eastern region – making for an even more complicated situation.

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

By contrast, the SpaceX Falcon 9 rocket and Dragon cargo vessel is virtually entirely American built and not subject to economic embargoes.

At a US Congressional hearing held today (March 5) dealing with national security issues, SpaceX CEO Elon Musk underscored the crucial differences in availability between the Falcon 9 and Atlas V in this excerpt from his testimony:

“In light of Russia’s de facto annexation of the Ukraine’s Crimea region and the formal severing of military ties, the Atlas V cannot possibly be described as providing “assured access to space” for our nation when supply of the main engine depends on President Putin’s permission, said Space X CEO and founder Elon Musk, at the US Senate appropriations subcommittee hearing on Defense.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

So, continuing operations of the ISS and US National Security are potentially held hostage to the whims of Russian President Vladimir Putin.

Russia has threatened to retaliate with sanctions against the West, if the West institutes sanctions against Russia.

The Crimean crisis is without a doubt the most dangerous East-West conflict since the end of the Cold War.

Right now no one knows the future outcome of the crisis in Crimea. Diplomats are talking but some limited military assets on both sides are reportedly on the move today.

map_of_ukraine

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, Orion, commercial space, Chang’e-3, LADEE, Mars and more planetary and human spaceflight news.

Ken Kremer

Atlantis thunders to life at Launch Pad 39 A at KSC on July 8.   Credit: Ken Kremer
Final Space Shuttle liftoff marks start of US dependency on Russia for human access to space.
Space Shuttle Atlantis thunders to life at Launch Pad 39 A at KSC on July 8, 2011. Credit: Ken Kremer