Just How Active is our Sun Now Compared to Two Years Ago?

This video provided by the Solar Dynamics Observatory provides a side-by-side comparison of the Sun from precisely two years ago (left, from SOHO in 2009) to the present (right, from Solar Dynamics Observatory, showing March 27-28, 2011) which dramatically illustrates just how active the Sun has become. The comparisons shown in two similar wavelengths of extreme ultraviolet light, reveal how the Sun now sports numerous active regions that appear as lighter areas that are capable of producing solar storms. Two years ago the Sun was in an extremely quiet solar minimum. The Sun’s maximum period of activity is predicted to be around 2013, so activity will likely continue to ramp up.

Double Explosions on the Sun Today

The Sun had a fit and popped off two large events at once early today, Jan. 28, 2011. A filament on the left side became unstable and erupted, while an M-1 flare (mid-sized) and a coronal mass ejection on the right blasted into space. Neither event was headed towards Earth. This SDO movie, which is from Jan. 26-28, 2011, shows several other flashes and bursting from the active region on the right as well.

If you remember, in December, solar physicists released their findings that near-synchronous explosions in the solar atmosphere – sometimes millions of kilometers apart – can be related.

You can see another view of the events as seen by the SOHO spacecraft below, and another version of the SDO data.
Continue reading “Double Explosions on the Sun Today”

SOHO Finds Its 2000th Comet

Image Left: SOHO's 2000th comet, spotted by a Polish amateur astronomer on December 26, 2010. Credit: SOHO/Karl Battams. Image Right: In 15 years since it launched in December 1995, the SOHO spacecraft, has doubled the number of comets sighted in the three hundred years previously. Credit: NASA/ESA/Alex Lutkus

[/caption]

From a NASA Press Release:

As people on Earth celebrate the holidays and prepare to ring in the New Year, an ESA/NASA spacecraft has quietly reached its own milestone: on December 26, the Solar and Heliospheric Observatory (SOHO) discovered its 2000th comet.

Drawing on help from citizen scientists around the world, SOHO has become the single greatest comet finder of all time. This is all the more impressive since SOHO was not specifically designed to find comets, but to monitor the sun.

“Since it launched on December 2, 1995 to observe the sun, SOHO has more than doubled the number of comets for which orbits have been determined over the last three hundred years,” says Joe Gurman, the U.S. project scientist for SOHO at NASA’s Goddard Space Flight Center in Greenbelt, Md.

Of course, it is not SOHO itself that discovers the comets — that is the province of the dozens of amateur astronomer volunteers who daily pore over the fuzzy lights dancing across the pictures produced by SOHO’s LASCO (or Large Angle and Spectrometric Coronagraph) cameras. Over 70 people representing 18 different countries have helped spot comets over the last 15 years by searching through the publicly available SOHO images online.

The 1999th and 2000th comet were both discovered on December 26 by Michal Kusiak, an astronomy student at Jagiellonian University in Krakow, Poland. Kusiak found his first SOHO comet in November 2007 and has since found more than 100.

“There are a lot of people who do it,” says Karl Battams who has been in charge of running the SOHO comet-sighting website since 2003 for the Naval Research Lab in Washington, where he also does computer processing for LASCO. “They do it for free, they’re extremely thorough, and if it wasn’t for these people, most of this stuff would never see the light of day.”

Battams receives reports from people who think that one of the spots in SOHO’s LASCO images looks to be the correct size and brightness and headed for the sun – characteristics typical of the comets SOHO finds. He confirms the finding, gives each comet an unofficial number, and then sends the information off to the Minor Planet Center in Cambridge, Mass, which categorizes small astronomical bodies and their orbits.

It took SOHO ten years to spot its first thousand comets, but only five more to find the next thousand. That’s due partly to increased participation from comet hunters and work done to optimize the images for comet-sighting, but also due to an unexplained systematic increase in the number of comets around the sun. Indeed, December alone has seen an unprecedented 37 new comets spotted so far, a number high enough to qualify as a “comet storm.”

LASCO was not designed primarily to spot comets. The LASCO camera blocks out the brightest part of the sun in order to better watch emissions in the sun’s much fainter outer atmosphere, or corona. LASCO’s comet finding skills are a natural side effect — with the sun blocked, it’s also much easier to see dimmer objects such as comets.

“But there is definitely a lot of science that comes with these comets,” says Battams. “First, now we know there are far more comets in the inner solar system than we were previously aware of, and that can tell us a lot about where such things come from and how they’re formed originally and break up. We can tell that a lot of these comets all have a common origin.” Indeed, says Battams, a full 85% of the comets discovered with LASCO are thought to come from a single group known as the Kreutz family, believed to be the remnants of a single large comet that broke up several hundred years ago.

The Kreutz family comets are “sungrazers” – bodies whose orbits approach so near the Sun that most are vaporized within hours of discovery – but many of the other LASCO comets boomerang around the sun and return periodically. One frequent visitor is comet 96P Machholz. Orbiting the sun approximately every six years, this comet has now been seen by SOHO three times.

SOHO is a cooperative project between the European Space Agency (ESA) and NASA. The spacecraft was built in Europe for ESA and equipped with instruments by teams of scientists in Europe and the USA.

For more information see the SOHO website. .

See SOHO realtime data.

SoHO Celebrates its 12th Birthday

171cycle_dates.thumbnail.jpg

On December 2nd, 1995 a large joint ESA and NASA mission was launched to gain an insight to the dynamics of the Sun and its relationship with the space between the planets. 12 years on, the Solar and Heliospheric Observatory (SoHO) continues to witness some of the largest explosions ever seen in the solar system, observes beautiful magnetic coronal arcs reach out into space and tracks comets as they fall to a fiery death. In the line of duty, SoHO even suffered a near-fatal shutdown (in 1998). As far as astronomy goes, this is a tough assignment.

By the end of 1996, SoHO had arrived at the First Lagrange Point between the Earth and the Sun (a gravitationally stable position balanced by the masses of the Sun and Earth, about 1.5 million km away) and orbits this silent outpost to this day. It began to transmit data at “solar minimum”, a period of time at the beginning of the Solar Cycle, where sunspots are few and solar activity is low, and continues toward the upcoming solar minimum after the exciting firworks of the last “solar maximum”. This gives physicists another chance to observe the majority of a Solar Cycle with a single observatory (the previous long-lasting mission was the Japanese Yohkoh satellite from 1991-2001).

On board this ambitious observatory, 11 instruments constantly gaze at the Sun, observing everything from solar oscillations (“Sun Quakes�), coronal loops, flares, CMEs and the solar wind; just about everything the Sun does. SoHO has become an indispensable mission for helping us to understand how the Sun influences the environment around our planet and how this generates the potentially dangerous “Space Weather�.

The SoHO mission site confidently states that SoHO will remain in operation far into the next Solar Cycle. I hope this is the case as the new Hinode and STEREO probes will be good company for this historic mission.

Source: NASA News Release