Orion assemblage on track for 2014 Launch

Image caption: Orion EFT-1 crew cabin construction ongoing inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC). This is the inaugural space-bound Orion vehicle due to blastoff from Florida in September 2014 atop a Delta 4 Heavy rocket. Credit: Ken Kremer

NASA is thrusting forward and making steady progress toward launch of the first space-bound Orion crew capsule -designed to carry astronauts to deep space. The agency aims for a Florida blastoff of the uncrewed Exploration Flight Test-1 mission (EFT-1) in September 2014 – some 20 months from now – NASA officials told Universe Today.

I recently toured the Orion spacecraft up close during an exclusive follow-up visit to check the work in progress inside the cavernous manufacturing assembly facility in the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC). Vehicle assemblage is run under the auspices of prime contractor Lockheed Martin Space Systems Corporation.

A lot of hardware built by contractors and subcontractors from all across the U.S. is now arriving at KSC and being integrated with the EFT-1 crew module (CM), said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an interview with Universe Today beside the spacecraft at KSC.

“Everyone is very excited to be working on the Orion. We have a lot of work to do. It’s a marathon not a sprint to build and test the vehicle,” Schneider explained to me.

My last inspection of the Orion was at the official KSC unveiling ceremony on 2 July 2012 (see story here). The welded, bare bones olive green colored Orion shell had just arrived at KSC from NASA’s Michoud facility in New Orleans. Since then, Lockheed and United Space Alliance (USA) technicians have made significant progress outfitting the craft.

Workers were busily installing avionics, wiring, instrumentation and electrical components as the crew module was clamped in place inside the Structural Assembly Jig during my follow-up tour. The Jig has multiple degrees of freedom to move the capsule and ease assembly work.

“Since July and to the end of 2012 our primary focus is finishing the structural assembly of the crew module,” said Schneider.

“Simultaneously the service module structural assembly is also ongoing. That includes all the mechanical assembly inside and out on the primary structure and all the secondary structure including the bracketry. We are putting in the windows and gussets, installing the forward bay structure leading to the crew tunnel, and the aft end CM to SM mechanism components. We are also installing secondary structures like mounting brackets for subsystem components like avionics boxes and thruster pods as parts roll in here.”


Image caption: Window and bracket installation on the Orion EFT-1 crew module at KSC. Credit: Ken Kremer

“A major part of what we are doing right now is we are installing a lot of harnessing and test instrumentation including alot of strain gauges, accelerometers, thermocouples and other gauges to give us data, since that’s what this flight is all about – this is a test article for a test flight.

“There is a huge amount of electrical harnesses that have to be hooked up and installed and soldered to the different instruments. There is a lot of unique wiring for ground testing, flight testing and the harnesses that will be installed later along with the plumbing. We are still in a very early stage of assembly and it involves alot of very fine work,” Schneider elaborated. Ground test instrumentation and strain gauges are installed internally and externally to measure stress on the capsule.

Construction of the Orion service module is also moving along well inside the SM Assembly Jig at an adjacent work station. The SM engines will be mass simulators, not functional for the test flight.

Image caption: Orion EFT-1 crew cabin and full scale mural showing Orion Crew Module atop Servivce Module inside the O & C Building at the Kennedy Space Center, Florida. Credit: Ken Kremer

The European Space Agency (ESA) has been assigned the task of building the fully functional SM to be launched in 2017 on NASA’s new SLS rocket on a test flight to the moon and back.

Although Orion’s construction is proceeding apace, there was a significant issue during recent proof pressure testing at the O & C when the vehicle sustained three cracks in the aft bulkhead of the lower half of the Orion pressure vessel.

“The cracks did not penetrate the pressure vessel skin, and the structure was holding pressure after the anomaly occurred,” Brandi Dean, a NASA Public Affairs Officer told me. “The failure occurred at 21.6 psi. Full proof is 23.7 psi.”

“A team composed of Lockheed Martin and NASA engineers have removed the components that sustained the cracks and are developing options for repair work. Portions of the cracked surface were removed and evaluated, letting the team eliminate problems such as material contamination, manufacturing issues and preexisting defects from the fault tree. The cracks are in three adjacent, radial ribs of this integrally machined, aluminum bulkhead,” Dean stated.

Image caption: NASA graphic of 3 cracks discovered during recent proof pressure testing. Credit: NASA

The repairs will be subjected to rigorous testing to confirm their efficacy as part of the previously scheduled EFT-1 test regimen.

A great deal of work is planned over the next few months including a parachute drop test just completed this week and more parachute tests in February 2013. The heat shield skin and its skeleton are being manufactured at a Lockheed facility in Denver, Colorado and shipped to KSC. They are due to be attached in January 2013 using a specialized tool.

“In March 2013, we’ll power up the crew module at Kennedy for the first time,” said Dean.

Orion will soar to space atop a mammoth Delta IV Heavy booster rocket from Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Construction and assembly of the triple barreled Delta IV Heavy is the pacing item upon which the launch date hinges, NASA officials informed me.

Following the forced retirement of NASA’s space shuttles, the United Launch Alliance Delta IV Heavy is now the most powerful booster in the US arsenal and heretofore has been used to launch classified military satellites. Other than a specialized payload fairing built for Orion, the rocket will be virtually identical to the one that boosted a super secret U.S. National Reconnaissance Office (NRO) spy satellite to orbit on June 29, 2012 (see my launch story here).

Orion will fly in an unmanned configuration during the EFT-1 test flight and orbit the Earth two times – reaching an altitude of 3,600 miles which is 15 times farther than the International Space Station’s orbital position. The primary objective is to test the performance of Orion’s heat shield at the high speeds and searing temperatures generated during a return from deep space like those last experienced in the 1970’s by the Apollo moon landing astronauts.

The EFT-1 flight is not the end of the road for this Orion capsule.

“Following the EFT-1 flight, the Orion capsule will be refurbished and reflown for the high altitude abort test, according to the current plan which could change depending on many factors including the budget,” explained Schneider.

“NASA will keep trying to do ‘cool’ stuff”, Bill Gerstenmaier, the NASA Associate Administrator for Human Space Flight, told me.

Stay tuned – Everything regarding human and robotic spaceflight depends on NASA’s precarious budget outlook !

Ken Kremer

Image caption: Orion EFT-1 crew cabin assemblage inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer. Credit: Ken Kremer

‘NASA Johnson Style’ Parodies ‘Gangnam Style’ Music Video

Check this out and get in the groove to enjoy some really cool fun from NASA

NASA interns and NASA astronauts have joined forces to create a very humorous and entertaining music video parody of the “Gangnam Style” mega hit by international pop sensation PSY – It’s called “NASA Johnson Style” and its New!

A team of interns from NASA’s Johnson Space Center (pictured below) in Houston created original lyrics, convinced several initially incredulous astronauts to dance along and shot the video at several NASA centers. Then they integrated the whole kit and kaboodle with the “Gangnam Style” instrumental track. Scotty would be proud of the intricate engineering demanded to pull this off – but where are the tribbles !

Image caption: Mike Massimino (center) poses with the intern video team after filming at JSC. Photo credit: Nicole Cloutier

The video features a fun loving crew of NASA astronauts including Mike Massimino, who deftly repaired the Hubble Space Telescope twice among other things, Clayton Anderson and Tracy Caldwell Dyson who lived and worked for many months aboard the International Space Station, and Mike Coats, a Shuttle commander and the retiring Director of the Johnson Space Center.

The video also features actual footage from the International Space Station , Apollo Moonwalks, Curiosity on Mars, Dawn at Vesta, Houston Mission control, the SLS and Orion Crew vehicle as well as real research labs and scientists here on Earth. So it’s fun and meant to be educational as well.

“Gangnam Style” by the Korean singing star PSY is the most popular YouTube music ever and is enjoyed by millions more every day since it was released last summer. It has spawned numerous other parodies.

And in case you missed last summer’s mega hit parody straight from the Red Planet – click on this: “We’re NASA and We Know It (Mars Curiosity)” – Note: this is NOT a NASA production

Now, turn up the volume and enjoy some light hearted cheer in this Holiday season.

Ken Kremer

NASA’s Colossal Crawler Gets Souped-Up for SLS

Shuttle Discovery riding one of KSC’s crawler-transporters to Launch Pad 39B in June 2005 (NASA)

One of NASA’s two iconic crawler-transporters — the 2,750-ton monster vehicles that have delivered rockets from Saturns to Shuttles to launch pads at Kennedy Space Center for nearly half a century — is getting an upgrade in preparation for NASA’s new future in space flight.

131 feet long, 113 feet wide and with a breakneck top speed of 2 mph (they’re strong, not fast!) NASA’s colossal crawler-transporters are the only machines capable of hauling fully-fueled rockets the size of office buildings safely between the Vehicle Assembly Building and the launch pads at Kennedy Space Center. Each 3.5-mile one-way trip takes around 6 hours.

Now that the shuttles are retired and each in or destined for its permanent occupation as a relic of human spaceflight, the crawler-transporters have not been doing much crawling or transporting down the 130-foot-wide, Tennessee river-rock-coated lanes at KSC… but that’s soon to change.

According to an article posted Sept. 5 on TransportationNation.org, crawler 2 (CT-2) is getting a 6-million-pound upgrade, bringing its carrying capacity from 12 million pounds to 18 million. This will allow the vehicle to bear the weight of a new generation of heavy-lift rockets, including NASA’s Space Launch System (SLS).

Read: SLS: NASA’s Next Big Thing

In addition to carrying capacity CT-2 will also be getting new brakes, exhausts, hydraulics and computer systems.

Part of a $2 billion plan to upgrade Kennedy Space Center for a future with both NASA and commercial spaceflight partners, the crawler will have two of its onboard power engines replaced — but the original generators that power its eight enormous tread belts will remain, having been thoroughly inspected and deemed to be “in pristine condition” according to the article by Matthew Peddie.

When constructed in the early 1960s, the crawler-transporters were the largest tracked vehicles ever made and cost $14 million — that’s about $100 million today. But were they to be built from scratch now they’d likely cost even more, as the US “is no longer the industrial powerhouse it was in the 1960s.”

Still, it’s good to know that these hardworking behemoths will keep bringing rockets to the pad, even after the shuttles have been permanently parked.

“When they built the crawler, they overbuilt it, and that’s a great thing because it’s able to last all these years. I think it’s a great machine that could last another 50 years if it needed to,” said Bob Myers, systems engineer for the crawler.

You can see some really great full panoramas of the CT-2 at the NASATech website, where photographer John O’Connor took three different panoramic views while the transporter was inside the Vehicle Assembly Building at KSC in Highbay 1. There’s even a pan close-up of the giant cleats that move the transporter.

Read the full article on TransportationNation.org here, and find out more about the crawler-transporters here and here.

Since the Apollo years the transporters have traveled an accumulated 2,526 miles, about the same distance as a one-way highway trip from KSC to Los Angeles.

Inset image: the Apollo 11 Saturn V, tower and mobile launch platform atop the crawler-transporter during rollout on May 20, 1969. (NASA) Bottom image: NASA Administrator Charles Bolden on the site of the CT-2 upgrade in August 2012. Each of the crawler’s 456 tread shoes weighs about one ton. (NASA)

1st Space-bound Orion Crew Capsule Unveiled at Kennedy

Image caption: Sen. Bill Nelson of Florida welcomes the newly arrived Orion crew capsule at a Kennedy Space Center unveiling ceremony on July 2, 2012 and proclaims Mars is NASA’s long term goal for human exploration. Credit: Ken Kremer

NASA’s first space-bound Orion crew capsule was officially unveiled at a welcoming ceremony at the Kennedy Space Center on Monday (July 2) to initiate a process that the agency hopes will finally put Americans back on a path to exciting destinations of exploration beyond low Earth orbit for the first time in 40 years since Apollo and spawn a new era in deep space exploration by humans – starting with an initial uncrewed test flight in 2014.

Over 450 invited guests and dignitaries attended the Orion arrival ceremony at Kennedy’s Operations and Checkout Building (O & C) to mark this watershed moment meant to reignite human exploration of the cosmos.

“This starts a new, exciting chapter in this nation’s great space exploration story,” said Lori Garver, NASA deputy administrator. “Today we are lifting our spirits to new heights.”

Image caption: Posing in front of NASA’s 1st Orion crew module set for 2014 liftoff are; KSC Director Bob Cabana, Mark Geyer, NASA Orion Program manager, Sen. Bill Nelson (FL), Lori Garver, NASA Deputy Administrator. Credit: Ken Kremer

This Orion capsule is due to lift off on a critical unmanned test flight in 2014 atop a powerful Delta 4 Heavy booster – like the Delta rocket just launched on June 29.

The bare bones, olive green colored aluminum alloy pressure shell arrived at KSC last week from NASA’s Michoud Assembly Facility where the vessel was assembled and the final welds to shape it into a capsule were just completed. Every space shuttle External Tank was built at Michoud in New Orleans.

U.S. Senator Bill Nelson of Florida has spearheaded the effort in Congress to give NASA the goal and the funding to build the Orion Multipurpose Crew Vehicle (MPCV) and the means to launch it atop the most powerful rocket ever built – a Saturn V class booster dubbed the SLS or Space Launch System – to destinations in deep space that have never been explored before.

“Isn’t this beautiful?” said Nelson as he stood in front of the incomplete vessel, motioned to the crowd and aimed his sights high. “I know there are a lot of people here who can’t wait to get their hands and their fingers on this hardware.

“And ladies and gentlemen, we’re going to Mars!” proclaimed Nelson.

“Without question, the long-term goal of our space program, human space program right now is the goal of going to Mars in the decade of the 2030s.”

“We still need to refine how we’re going to go there, we’ve got to develop a lot of technologies, we’ve got to figure out how and where we’re going to stop along the way. The president’s goal is an asteroid in 2025. But we know the Orion capsule is a critical part of the system that is going to take us there.”


Image caption: The green colored aluminum alloy pressure vessel arrived at KSC last week and will be outfitted with all the instrumentation required for spaceflight. Launch is slated for 2014 atop Delta 4 Heavy booster from pad 37 on Cape Canaveral. Crew hatch and tunnel visible at center. Credit: Ken Kremer

Orion is the most advanced spacecraft ever designed.

Over about the next 18 months, engineers and technicians at KSC will install all the systems and gear – such as avionics, instrumentation, flight computers and the heat shield – required to transform this empty shell into a functioning spacecraft.

The 2014 uncrewed flight, called Exploration Flight Test-1 or EFT-1, will be loaded with a wide variety of instruments to evaluate how the spacecraft behaves during launch, in space and then through the searing heat of reentry.

The 2 orbit flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station. Although the mission will only last a few hours it will be able high enough to send the vehicle plunging back into the atmosphere at over 20.000 MPH to test the craft and its heat shield at deep-space re-entry speeds approaching those of the Apollo moon landing missions.

Image caption: Sen. Bill Nelson of Florida discusses the new arrived Orion capsule with NASA Deputy Administrator Lori Garver while surrounded by a horde of reporters at the Kennedy Space Center unveiling ceremony on July 2, 2012. Credit: Ken Kremer

Orion arrived at Kennedy on nearly the same day that the center opened its door 50 years ago.

“As KSC celebrates its 50th anniversary this month, I can’t think of a more appropriate way to celebrate than by having the very first Orion Multi-Purpose Crew Vehicle here at KSC,” said KSC Center Director Robert Cabana, a former shuttle commander, at the O & C ceremony.

“The future is here, now, and the vehicle we see here today is not a Powerpoint chart. It’s a real spacecraft, moving toward a test flight in 2014.”

In 2017, an Orion capsule will lift off on the first SLS flight. The first crewed Orion will launch around 2021 and orbit the moon, Lori Garver told me in an interview at KSC.

But the entire schedule and construction of the hardware is fully dependent on funding from the federal government.

In these lean times, there is no guarantee of future funding and NASA’s budget has already been significantly chopped – forcing numerous delays and outright mission cancellations on many NASA projects; including the outright termination of NASA next Mars rover and multi-year delays to the commercial crew program and prior plans to launch a crewed Orion to orbit as early as 2013.

Image caption: Veteran NASA Astronaut Rex Walheim discusses Orion with Universe Today. Walheim flew on the last space shuttle mission (STS-135). Credit: Ken Kremer

Astronaut Rex Walheim, who flew on the final space shuttle mission (STS-135) and has had key role in developing Orion, said the Orion capsule can be the principal spacecraft for the next 30 years of human exploration of the solar system.

“It’s the first in a line of vehicles that can take us where we’ve never gone before,” Walheim said. “It’ll be a building block approach, we’ll have to have a lander and a habitation module, but we can get there.”


Image caption: John Karas, Lockheed Martin Vice President for Human Space Flight poses with Orion and discusses the upcoming 2014 EFT-1 test flight with Universe Today. Lockheed is the prime contractor for Orion. Credit: Ken Kremer

“Personally I am thrilled to be working on the next vehicle that will take us beyond low Earth orbit, said John Karas, Lockheed Martin Vice President for Human Space Flight. Lockheed Martin is the prime contractor to build Orion.

“Orion will carry humans to destinations never explored before and change human’s perspectives”

“Folks here are ready to start working on the EFT-1 mission. In about 18 months, EFT-1 will fly on the next Delta 4 Heavy flight.

“I can’t wait to go deeper into the cosmos!” Karas exclaimed.

Ken Kremer

…..
July 13/14: Free Public Lectures about NASA’s Mars and Planetary Exploration, the Space Shuttle, SpaceX , Orion and more by Ken Kremer at the Adirondack Public Observatory in Tupper Lake, NY.

Drop Test for Orion Crew Capsule’s New Parachutes

NASA successfully conducted a drop test of the Orion crew vehicle’s entry, descent and landing parachutes in preparation for the vehicle’s first orbital flight test, currently scheduled for 2014. Orion is the crew vehicle that NASA is building to bring astronauts to new destinations in space. It will be launched on the new rocket being built, the Space Launch System. Unlike the space shuttle, Orion will have emergency abort capability, and won’t be landing on a runway. Instead, the vehicle will splash down in the ocean, like the US capsules in the 1960’s and 70’s. NASA is working to make sure the crews will have a safe re-entry and landing, and the parachute tests help to ensure that.
Continue reading “Drop Test for Orion Crew Capsule’s New Parachutes”

Orion Crew Capsule Targeted for 2014 Leap to High Orbit

[/caption]

NASA is on course to make the highest leap in human spaceflight in nearly 4 decades when an unmanned Orion crew capsule blasts off from Cape Canaveral, Fla., on a high stakes, high altitude test flight in early 2014.

A new narrated animation (see below) released by NASA depicts the planned 2014 launch of the Orion spacecraft on the Exploration Flight Test-1 (EFT-1) mission to the highest altitude orbit reached by a spaceship intended for humans since the Apollo Moon landing Era.

Orion is NASA’s next generation human rated spacecraft and designed for missions to again take humans to destinations beyond low Earth orbit- to the Moon, Mars, Asteroids and Beyond to deep space.


Orion Video Caption – Orion: Exploration Flight Test-1 Animation (with narration by Jay Estes). This animation depicts the proposed test flight of the Orion spacecraft in 2014. Narration by Jay Estes, Deputy for flight test integration in the Orion program.

Lockheed Martin Space Systems is making steady progress constructing the Orion crew cabin that will launch atop a Delta 4 Heavy booster rocket on a two orbit test flight to an altitude of more than 3,600 miles and test the majority of Orion’s vital vehicle systems.

The capsule will then separate from the upper stage, re-enter Earth’s atmosphere at a speed exceeding 20,000 MPH, deploy a trio of huge parachutes and splashdown in the Pacific Ocean off the west coast of California.

Lockheed Martin is responsible for conducting the critical EFT-1 flight under contract to NASA.

Orion will reach an altitude 15 times higher than the International Space Station (ISS) circling in low orbit some 250 miles above Earth and provide highly valuable in-flight engineering data that will be crucial for continued development of the spaceship.

Orion Exploration Flight Test One Overview. Credit: NASA

“This flight test is a challenge. It will be difficult. We have a lot of confidence in our design, but we are certain that we will find out things we do not know,” said NASA’s Orion Program Manager Mark Geyer.

“Having the opportunity to do that early in our development is invaluable, because it will allow us to make adjustments now and address them much more efficiently than if we find changes are needed later. Our measure of success for this test will be in how we apply all of those lessons as we move forward.”

Lockheed Martin is nearing completion of the initial assembly of the Orion EFT-1 capsule at NASA’s historic Michoud Assembly Facility (MAF) in New Orleans, which for three decades built all of the huge External Fuel Tanks for the NASA’s Space Shuttle program.

In May, the Orion will be shipped to the Kennedy Space Center in Florida for final assembly and eventual integration atop the Delta 4 Heavy rocket booster and launch from Space Launch Complex 37 at nearby Cape Canaveral. The Delta 4 is built by United Launch Alliance.

The first integrated launch of an uncrewed Orion is scheduled for 2017 on the first flight of NASA’s new heavy lift rocket, the SLS or Space Launch System that will replace the now retired Space Shuttle orbiters

Continued progress on Orion, the SLS and all other NASA programs – manned and unmanned – is fully dependent on the funding level of NASA’s budget which has been significantly slashed by political leaders of both parties in Washington, DC in recent years.

…….

March 24 (Sat): Free Lecture by Ken Kremer at the New Jersey Astronomical Association, Voorhees State Park, NJ at 830 PM. Topic: Atlantis, the End of Americas Shuttle Program, Orion, SpaceX, CST-100 and the Future of NASA Human & Robotic Spaceflight

NASA Test-Fires Key Engine for New Launch System

NASA successfully test-fired the J2-X rocket engine on Wednesday, a key component of the Space Launch System, NASA’s giant new rocket that is slated to take cargo and crew beyond low Earth orbit. A deafening 500-second firing test at the Stennis Space Center showed the engine is ready for the next steps in building the SLS rocket.

“What you heard to today is the sound of the front end of the critical path to the future,” said Stennis Director Patrick Scheuermann, speaking at a press conference immediately after the test fire, which began at 4:04 p.m. EST (2104 GMT).

Continue reading “NASA Test-Fires Key Engine for New Launch System”

All Together Now!

[/caption]

That’s a lot of power under one roof! For the first time in… well, ever… all fifteen Space Shuttle Main Engines (SSMEs) are together inside NASA’s Engine Shop at Kennedy Space Center. They will be prepped for shipment to Stennis Space Center in Mississippi where they’ll become part of the propulsion used on NASA’s next generation heavy-lift rocket: the Space Launch System.

The engines, built by Pratt & Whitney Rocketdyne, are each 14 feet (4.2 meters) long & 7.5 feet (2.3 meters) in diameter at the end of its nozzle, and weighs approximately 7,000 lbs (3175 kg).

Photo from a test firing of an SSME at the Stennis Space Center in 1981. Credit: NASA.

Each engine is capable of generating a force of nearly 400,000 pounds (lbf) of thrust at liftoff, and consumes 350 gallons (1,340 liters) of fuel per second. They are engineered to burn liquid hydrogen and liquid oxygen, creating exhaust composed primarily of water vapor.

The engines will be incorporated into the Space Launch System (SLS), which is designed to carry the Orion Multi-Purpose Crew Vehicle – also currently in development – as well as serve as backup for commercial and international transportation to the ISS. By utilizing current technology and adapting it for future needs, NASA will be able to make the next leap in human spaceflight and space exploration – while getting the most “bang” out of the taxpayers’ bucks.

“NASA has been making steady progress toward realizing the president’s goal of deep space exploration, while doing so in a more affordable way. We have been driving down the costs on the Space Launch System and Orion contracts by adopting new ways of doing business and project hundreds of millions of dollars of savings each year.” 

–  NASA Deputy Administrator Lori Garver

Nine of the 15 SSMEs await shipment inside NASA's Engine Shop. Each weighs approximately 7,000 lbs. Credit: NASA.

While it’s sad to see these amazing machines removed from the shuttles, it’s good to know that they still have plenty of life left in them and will soon once again be able to take people into orbit and beyond!

Read more about the Space Launch System here.

Construction Begins on the 1st Space-Bound Orion Crew Module

[/caption]

Production of NASA’s first space-bound Orion crew module has at last begun at NASA’s Michoud Assembly Facility (MAF) in New Orleans – that’s the same facility that for more than three decades was responsible for manufacturing the huge orange colored External Tanks for the just retired Space Shuttle Program.

The first weld of structural elements of the Orion crew cabin was completed by Lockheed Martin engineers working at Michoud on Sept. 9, 2011. This marks a major milestone on the path toward the full assembly and first test flight of an Orion capsule.

This state of the art Orion vehicle also holds the distinction of being the first new NASA spacecraft built to blast humans to space since Space Shuttle Endeavour was assembled at a California manufacturing facility in 1991.

This capsule will be used during Orion’s first test flight in space which could occur as early as 2013. Credit: NASA

Eventually, Orion crew modules with astronaut crews will fly atop NASA’s newly announced monster rocket – the SLS – to exciting new deep space destinations beyond low Earth Orbit; such as the Moon, Asteroids and Mars.

“This marks the beginning of NASA’s next step to send humans far beyond Earth orbit,” said Orion program manager Mark Geyer. “The Orion team has maintained a steady focus on progress, and we now are beginning to build hardware for spaceflight. With this milestone, we enter the home stretch toward our first trip to space in this new vehicle.”

The first unmanned Orion test flight – dubbed OFT-1 – could come as early as 2013 depending on the funding available from NASA and the US Federal Government.

Welding the First Space-Bound Orion at NASA’s Michoud Assembly Facility in New Orleans by NASA and Lockheed Martin contractor team. Credit: NASA

NASA is still deciding which rocket to use for the initial test flight – most likely a Delta 4 Heavy but possibly also the new Liberty rocket proposed by ATK and EADS.

The framework welds were completed using the same type of friction stir welding (FSW) process that was implemented to construct the last several of the 135 Space Shuttle External Tanks at MAF that flew during the shuttle program.

Friction Stir Welding creates seamless welds in the Aluminum – Lithium alloys used for construction that are far stronger and more reliable and reproducible compared to conventional welding methods.

The first Space-Bound Orion will look similar to this initial Orion Ground Test Article (GTA) prototype crew cabin built in 2010 at NASA’s Michoud Assembly Facility, New Orleans, LA after individual segments were bound together by Friction Stir Welding techniques. Note the astronaut crew hatch and windows. The GTA is now undergoing testing and integration at Lockheed’s facilities in Denver, Colorado. Credit: Ken Kremer

Orion spacecraft will be manufactured at Michoud in New Orleans, Louisiana, then sent to the Operations & Checkout Facility at Kennedy Space Center for final assembly and integration prior to launch.

Lockheed Martin is the prime contractor for Orion. The vehicle was recently renamed the Orion Multipurpose Crew Vehicle (MPCV) after being resurrected following its cancellation by President Obama as a key element of NASA’s now defunct Project Constellation “Return to the Moon” program.

NASA's Orion Multi Purpose Crew Vehicle
The Orion MPVC Multi Purpose Crew Vehicle ground test article (GTA) is shown at the Lockheed Martin Vertical Test Facility in Colorado. The GTA’s heat shield and thermal protection backshell was completed in preparation for environmental testing. Credit: NASA/Lockheed Martin

The first crewed Orion won’t launch until the 2nd flight of the SLS set for around 2020 said William Gerstenmaier, NASA Associate Administrator for Human Exploration and Operations (HEO) Mission Directorate, at an SLS briefing for reporters on Sept. 14.

Lockheed has already built an initial version of the Orion crew capsule known as the Orion Ground Test Article (GTA) and which is currently undergoing stringent vibration and acoustics testing to mimic the harsh environments of space which the capsule must survive.

Watch for my upcoming Orion GTA status report.

Sketch of the Orion Multipurpose Crew Vehicle. Credit: NASA
Artists concept of the STS blasting off with the Orion Crew Module from the Kennedy Space Center. Credit: NASA

Read Ken’s continuing features about the Orion project and Orion GTA starting here:
First Orion Assembled at Denver, Another Orion Displayed at Kennedy Space Center
Lockheed Accelerates Orion to Achieve 2013 launch and potential Lunar Flyby

SLS: NASA’s Next Big Thing

[/caption]

NASA has officially unveiled the plan for their next large-scale rocket: the Space Launch System, or SLS, will provide heavy-lift capabilities for cargo and spacecraft to go beyond low-Earth orbit and is proposed as a safe, sustainable and efficient way to open up the next chapter in US space exploration.

SLS is designed to carry the Orion Multi-Purpose Crew Module, NASA’s next-generation human spaceflight vehicle that is specifically designed for long-duration missions. (Construction of the first space-bound MPCV began last week on September 9.)

Utilizing a modular design that can accommodate varying mission needs, SLS will also be able to provide service to the International Space Station.

“President Obama challenged us to be bold and dream big, and that’s exactly what we are doing at NASA. While I was proud to fly on the space shuttle, tomorrow’s explorers will now dream of one day walking on Mars.”

– NASA Administrator Charles Bolden

SLS will have an initial lift capacity of over 70 metric tons – about 154,000 pounds (70,000 kg). That’s three times the lift capability of the space shuttles! In the event of a Mars mission that can be upgraded to 130 metric tons – about the weight of 75 SUVs.

Artist image of SLS launch. Credit: NASA

The first developmental flight is targeted for the end of 2017.

SLS will be the first exploration-class vehicle since the giant Saturn V rockets that carried the Apollo astronauts to the Moon. Using rocket technology developed during the shuttle era and modified for the canceled Constellation program, combined with cutting-edge manufacturing processes, SLS will expand the boundaries of human spaceflight and extend our reach into the solar system.

“This launch system will create good-paying American jobs, ensure continued U.S. leadership in space, and inspire millions around the world,” NASA Administrator Charles Bolden said. “President Obama challenged us to be bold and dream big, and that’s exactly what we are doing at NASA. While I was proud to fly on the space shuttle, tomorrow’s explorers will now dream of one day walking on Mars.”

Read the NASA news release here.

(And check out this “Fun Facts” sheet on SLS.)