What is Lunar Regolith?

A boot print on the lunar regolith. Credit: NASA.

When you’re walking around on soft ground, do you notice how your feet leave impressions? Perhaps you’ve tracked some of the looser earth in your yard into the house on occasion? If you were to pick up some of these traces – what we refer to as dirt or soil – and examine them beneath a microscope, what would you see?

Essentially, you would be seeing the components of what is known as regolith, which is a collection of particles of dust, soil, broken rock, and other materials found here on Earth. But interestingly enough, this same basic material can be found in other terrestrial environments as well – including the Moon, Mars, other planets, and even asteroids.

Definition:

The term regolith refers to any layer of material covering solid rock, which can come in the form of dust, soil or broken rock. The word is derived from the combination of two Greek words – rhegos (which means “blanket”) and lithos (which means “rock).

Earth:

On Earth, regolith takes the form of dirt, soil, sand, and other components that are formed as a result of natural weathering and biological processes. Due to a combination of erosion, alluvial deposits (i.e. moving water deposing sand), volcanic eruptions, or tectonic activity, the material is slowly ground down and laid out over solid bedrock.

central Yilgarn Craton, Western Australia.
Picture of Mt Magnet in the Central Yilgarn Craton in Western Australia, which dates to the Precambrian Era. Credit: geomorphologie.revues.org

It can be made up of clays, silicates, various minerals, groundwater, and organic molecules. Regolith on Earth can vary from being essentially absent to being hundreds of meters thick. Its can also be very young (in the form of ash, alluvium, or lava rock that was just deposited) to hundreds of millions of years old (regolith dating to the Precambrian age occurs in parts of Australia).

On Earth, the presence of regolith is one of the important factors for most life, since few plants can grow on or within solid rock and animals would be unable to burrow or build shelter without loose material. Regolith is also important for human beings since it has been used since the dawn of civilization (in the form of mud bricks, concrete and ceramics) to build houses, roads, and other civil works.

The difference in terminology between “soil” (aka. dirt, mud, etc.) and “sand” is the presence of organic materials. In the former, it exists in abundance, and is what separates regolith on Earth from most other terrestrial environments in our Solar System.

The Moon:

The surface of the Moon is covered with a fine powdery material that scientists refer to it as “lunar regolith”. Nearly the entire lunar surface is covered with regolith, and bedrock is only visible on the walls of very steep craters.

Earth viewed from the Moon by the Apollo 11 spacecraft. Credit: NASA
Earth viewed from the Moon by the Apollo 11 spacecraft, across a sea of lunar soil. Credit: NASA

The Moon regolith was formed over billions of years by constant meteorite impacts on the surface of the Moon. Scientists estimate that the lunar regolith extends down 4-5 meters in some places, and even as deep as 15 meters in the older highland areas.

When the plans were put together for the Apollo missions, some scientists were concerned that the lunar regolith would be too light and powdery to support the weight of the lunar lander. Instead of landing on the surface, they were worried that the lander would just sink down into it like a snowbank.

However, landings performed by robotic Surveyor spacecraft showed that the lunar soil was firm enough to support a spacecraft, and astronauts later explained that the surface of the Moon felt very firm beneath their feet. During the Apollo landings, the astronauts often found it necessary to use a hammer to drive a core sampling tool into it.

Once astronauts reached the surface, they reported that the fine moon dust stuck to their spacesuits and then dusted the inside of the lunar lander. The astronauts also claimed that it got into their eyes, making them red; and worse, even got into their lungs, giving them coughs. Lunar dust is very abrasive, and has been noted for its ability to wear down spacesuits and electronics.

Alan Bean Takes Lunar Soil Sample
Alan Bean takes a sample of lunar regolith during the Apollo 12 mission. Credit: NASA

The reason for this is because lunar regolith is sharp and jagged. This is due to the fact that the Moon has no atmosphere or flowing water on it, and hence no natural weathering process. When the micro-meteoroids slammed into the surface and created all the particles, there was no process for wearing down its sharp edges.

The term lunar soil is often used interchangeably with “lunar regolith”, but some have argued that the term “soil” is not correct because it is defined as having organic content. However, standard usage among lunar scientists tends to ignore that distinction. “Lunar dust” is also used, but mainly to refer to even finer materials than lunar soil.

As NASA is working on plans to send humans back to the Moon in the coming years, researchers are working to learn the best ways to work with the lunar regolith. Future colonists could mine minerals, water, and even oxygen out of the lunar soil, and use it to manufacture bases with as well.

Mars:

Landers and rovers that have been sent to Mars by NASA, the Russians and the ESA have returned many interesting photographs, showing a landscape that is covered with vast expanses of sand and dust, as well as rocks and boulders.

A successful scoop of Martian regolith (NASA/JPL-Caltech/University of Arizona/Max Planck Institute)
A successful scoop of Martian regolith performed by NASA’s Phoenix lander. Credit: NASA/JPL-Caltech/University of Arizona/Max Planck Institute

Compared to lunar regolith, Mars dust is very fine and enough remains suspended in the atmosphere to give the sky a reddish hue. The dust is occasionally picked up in vast planet-wide dust storms, which are quite slow due to the very low density of the atmosphere.

The reason why Martian regolith is so much finer than that found on the Moon is attributed to the flowing water and river valleys that once covered its surface. Mars researchers are currently studying whether or not martian regolith is still being shaped in the present epoch as well.

It is believed that large quantities of water and carbon dioxide ices remain frozen within the regolith, which would be of use if and when manned missions (and even colonization efforts) take place in the coming decades.

Mars moon of Deimos is also covered by a layer of regolith that is estimated to be 50 meters (160 feet) thick. Images provided by the Viking 2 orbiter confirmed its presence from a height of 30 km (19 miles) above the moon’s surface.

Asteroids and Outer Solar System:

The only other planet in our Solar System that is known to have regolith is Titan, Saturn’s largest moon. The surface is known for its extensive fields of dunes, though the precise origin of them are not known. Some scientists have suggested that they may be small fragments of water ice eroded by Titan’s liquid methane, or possibly particulate organic matter that formed in Titan’s atmosphere and rained down on the surface.

Another possibility is that a series of powerful wind reversals, which occur twice during a single Saturn year (30 Earth years), are responsible for forming these dunes, which measure several hundred meters high and stretch across hundreds of kilometers.  Currently, Earth scientists are still not certain what Titan’s regolith is composed of.

Data returned by the Huygens Probe’s penetrometer indicated that the surface may be clay-like, but long-term analysis of the data has suggested that it may be composed of sand-like ice grains.  The images taken by the probe upon landing on the moon’s surface show a flat plain covered in rounded pebbles, which may be made of water ice, and suggest the action of moving fluids on them.

Asteroids have been observed to have regolith on their surfaces as well. These are the result of meteoriod impacts that have taken place over the course of millions of years, pulverizing their surfaces and creating dust and tiny particles that are carried within the craters.

False color picture of Eros' 5.3-kilometer (3.3-mile) surface crater, showing regolith inside. Credit: NASA/JPL/JHUAPL
False color picture taken by NASA’s NEAR Shoemaker camera of Eros’ 5.3-kilometer (3.3-mile) surface crater, showing the presence of regolith inside. Credit: NASA/JPL/JHUAPL

NASA’s NEAR Shoemaker spacecraft produced evidence of regolith on the surface of the asteroid 433 Eros, which remains the best images of asteroid regolith to date. Additional evidence has been provided by JAXA’s Hayabusa mission, which returned clear images of regolith on an asteroid that was thought to be too small to hold onto it.

Images provided by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) cameras on board the Rosetta Spacecraft confirmed that the asteroid 21 Lutetia has a layer of regolith near its north pole, which was seen to flow in major landslides associated with variations in the asteriod’s albedo.

To break it down succinctly, wherever there is rock, there is likely to be regolith. Whether it is the product of wind or flowing water, or the presence of meteors impacting the surface, good old fashioned “dirt” can be found just about anywhere in our Solar System; and most likely, in the universe beyond…

We’ve done several articles about the Moon’s regolith here on Universe Today. Here’s a way astronauts might be able to extract water from lunar regolith with simple kitchen appliances, and an article about NASA’s search for a lunar digger.

Want to buy some lunar regolith simulant? Here’s a site that lets you buy it. Do you want to be a Moon miner? There’s lots of good metal in that lunar regolith.

You can listen to a very interesting podcast about the formation of the Moon from Astronomy Cast, Episode 17: Where Did the Moon Come From?

Reference:
NASA

Asteroids: 10 Interesting Facts About These Space Rocks

Artist's conception of asteroids and a gas giant planet. Credit: Harvard-Smithsonian Center for Astrophysics

At first glance, looking at a bunch of space rocks doesn’t sound that exciting. Like, aren’t they just a bunch of rubble? What use can they be in understanding the Solar System compared to looking at planets or moons?

Turns out that asteroids are key to figuring out how the Solar System came to be, and that they’re more interesting than they appear at first glance. Below, we have 10 facts about asteroids that will make you reconsider that biased first impression.

Asteroids are leftovers of the early Solar System.

The leading theory about how our neighborhood came to be is this: the Sun coalesced from a compressed grouping of gas that eventually began fusing atoms and creating a protostar. Meanwhile, the dust and debris nearby the Sun began to coalesce. Small grains became small rocks, which crashed into each other to form bigger ones. The survivors of this chaotic period are the planets and the moons that we see today … as well as a few smaller bodies. By studying asteroids, for example, we get a sense of what the Solar System used to look like billions of years ago.

This image shows the Themis Main Belt which sits between Mars and Jupiter. Asteroid 24 Themis, one of the largest Main Belt asteroids, was examined by University of Tennessee scientist, Josh Emery, who found water ice and organic material on the asteroid's surface. His findings were published in the April 2010 issue of Nature.  Credit: Josh Emery/University of Tennessee, Knoxville
This image shows the Themis Main Belt which sits between Mars and Jupiter. Asteroid 24 Themis, one of the largest Main Belt asteroids, was examined by University of Tennessee scientist, Josh Emery, who found water ice and organic material on the asteroid’s surface. His findings were published in the April 2010 issue of Nature. Credit: Josh Emery/University of Tennessee, Knoxville

Most asteroids are in a “belt”.

While there are asteroids all over the Solar System, there’s a huge collection of them between the orbits of Mars and Jupiter. Some astronomers think that could have formed into a planet if Jupiter was not nearby. By the way, this “belt” may erroneously create the impression that it is chock full of asteroids and require some fancy Millennium Falcon-style maneuvering, but in reality there are usually hundreds or thousands of miles in between individual asteroids. This shows the Solar System is a big place.

Asteroids are made of different things.

In general, an asteroid’s composition is determined by how close it is to the Sun. Our nearby star’s pressure and heat tends to melt ice that is close by and to blow out elements that are lighter. There are many kinds of asteroids, but these are the three main types, according to NASA:

  • Dark C (carbonaceous) asteroids, which make up most asteroids and are in the outer belt. They’re believed to be close to the Sun’s composition, with little hydrogen or helium or other “volatile” elements.
  • Bright S (silicaceous) asteroids and are in the inner belt. They tend to be metallic iron with some silicates of iron and magnesium.
  • Bright M (metallic) asteroids. They sit in the middle of the asteroid belt and are mostly made up of metallic iron.
Illustration of small asteroids passing near Earth. Credit: ESA / P. Carril
Illustration of small asteroids passing near Earth. Credit: ESA / P. Carril

Asteroids also lurk near planets.

NASA also has classifications for this asteroid type. Trojans stay in the same orbit as a planet, but they “hover” in a special spot known as a Lagrangian point that balances the pull of the planet’s gravity and the pull of the Sun. Trojans near Mars, Jupiter and Neptune have been discovered — as well as at least one near Earth in 2011. We also have near-Earth asteroids, which cross our orbit and could (statistically speaking) one day pose a threat to our planet. That said, no one has yet identified any one asteroid that will one day collide with our planet for sure.

Asteroids have moons.

While we think of moons as something that orbits a planet, asteroids also have smaller bodies that orbit them! The first known one was Dactyl, which was discovered in 1993 to be orbiting a larger asteroid called Ida. More than 150 asteroids are known to have moons, with more being discovered periodically. A more recent example is one discovered orbiting Asteroid 2004 BL86, which passed 750,000 miles (1.2 million kilometers) from Earth in early 2015.

Another set of images of 2004 BL86 and its moon. Credit: NAIC Observatory / Arecibo Observatory
Another set of images of 2004 BL86 and its moon. Credit: NAIC Observatory / Arecibo Observatory

We have flown by, orbited and even landed on asteroids. NASA says there are more than 10 spacecraft that accomplished at least one of these, so we’ll just cover a couple of examples here. NEAR Shoemaker touched down and survived for weeks on 433 Eros in 2001 despite not being designed to do it. NASA’s Dawn spacecraft spent months orbiting Vesta — the second-largest member of the asteroid belt — in 2011 and 2012. And in 2010, Japan’s Hayabusa spacecraft made an astonishing return to Earth bearing samples of asteroid Itokawa that it nabbed in 2005.

Asteroids are too small to support life as we know it. That’s because they’re too tiny to even hold on to atmospheres. Their gravity is too weak to pull their shape into a circle, so they’re irregularly shaped. To get a sense of just how small they are in aggregate, NASA says the mass of all the asteroids in the Solar System is less than our Moon — which only has a tenuous “exosphere” itself.

Impactors strike during the reign of the dinosaurs (image credit: MasPix/devianart)
Impactors strike during the reign of the dinosaurs (image credit: MasPix/devianart)

Despite their small size, water may flow on asteroid surfaces. Observations of Vesta released in 2015 show gullies that may have been carved by water. The theory is that when a smaller asteroid slams into a bigger one, the small asteroid releases a layer of ice in the bigger asteroid it hit. The force of the impact briefly turned the ice into water, which streaked across the surface. (As for how the ice got there in the first place, it’s possible that comets deposited it in some way — but that’s still being investigated as well.)

An asteroid could have killed the dinosaurs. The fossil record for dinosaurs and other creatures of their era show them rapidly disappearing around 65 million or 66 million years ago. According to National Geographic, there are two hypotheses for this event: an asteroid or comet hitting the Earth, or a huge volcano eruption. The case for an asteroid comes from a layer of iridium (a rare element on Earth, but not in meteorites) that is found all over the world, and a crater called Chicxulub in Mexico’s Yucatan Peninsula that is about 65 million years old. Iridium, however, is also found inside the Earth, which lends credence to some theories that it was volcanoes instead. In either case, the resulting debris blocked the Sun and eventually starved those survivors of the impact.

At least one asteroid has rings. Called Chariklo, scientists made the surprise discovery in 2013 when they watched it pass in front of a star. The asteroid made the background star “blink” a few times, which led to the discovery that two rings are surrounding the asteroid.

Moon Dust Could ‘Engulf’ Lunar Rovers — Especially During Sunrise and Sunset

Apollo 17 Mission
An Apollo 17 astronaut digs in the lunar regolith to study the mechanical behavior of moon dust. Credit: NASA

That video above is perhaps the ultimate off-roading adventure: taking a rover out for a spin on the moon. Look past the cool factor for a minute, though, and observe the dust falling down around that astronaut.

The crew aboard Apollo 16 (as well as other Apollo missions) had a lot of problems with regolith. It got into everything. It was so abrasive that it wore away some equipment in days. It smelled funny and probably wasn’t all that good to breathe in, either. Many have said that when we return to the moon, dust must be dealt with for long-term survival.

Things could get worse at sunrise and sunset. One new study (not peer-reviewed yet) finds a “serious risk” that rovers “could be engulfed in dust.” That’s because lunar dust appears to have electrostatic properties that, somehow, is triggered by changes in sunlight. (NASA is already doing some serious investigation into this matter using its orbiting missions.)

What the researchers did, in conjunction with ONERA (The French Center of Aerospace Research) was conduct simulations for two types of lunar regions — the terminator (the day/night boundary) and an area experiencing full sunlight.

“Dust particles were introduced into the simulation over a period of time, when both the surface and the rover were in electrical equilibrium,” the Royal Astronomical Society stated.

“In both the test cases, dust particles travel upwards above the height of the rover, but results suggest that they move in different directions. On the day side, the particles are pushed outwards and on the terminator the dust travels upwards and inwards above the rover, regrouping in the vacuum above it. The terminator simulation began with a region void of dust which was later filled by lunar dust particles.”

The bottom line? A lunar rover could accumulate a significant amount of dust on the moon, especially if it’s sitting at or near the terminator. This could be addressed by using dome-shaped rovers that would see the dust fall off, added lead author Farideh Honary, a physicist at the University of Lancaster, in a statement.

The work was presented at the RAS National Astronomy Meeting today (July 3). A paper has been submitted to the Journal for Geophysical Research, so more details should be forthcoming if and when it is published.

Credit: Royal Astronomical Society

The Moon Is Toxic

As our closest neighbor in space, a time-capsule of planetary evolution and the only world outside of Earth that humans have stepped foot on, the Moon is an obvious and ever-present location for future exploration by humans. The research that can be done on the Moon — as well as from it — will be invaluable to science. But the only times humans have visited the Moon were during quick, dusty  jaunts on its surface, lasting only 2-3 days each before departing. Long-term human exposure to the lunar environment has never been studied in depth, and it’s quite possible that — in addition to the many inherent dangers of living and working in space — the Moon itself may be toxic to humans.

An international team of researchers has attempted to quantify the health dangers of the Moon — or at least its dust-filled regolith. In a paper titled “Toxicity of Lunar Dust” (D. Linnarsson et al.) the health hazards of the Moon’s fine, powdery dust — which plagued Apollo astronauts both in and out of their suits — are investigated in detail (or as best as they can be without actually being on the Moon with the ability to collect pristine samples.)

Within their research the team, which included physiologists, pharmacologists, radiologists and toxicologists from 5 countries, investigated some of the following potential health hazards of lunar dust:

Inhalation. By far the most harmful effects of lunar dust would come from inhalation of the particulates. Even though lunar explorers would be wearing protective gear, suit-bound dust can easily make its way back into living and working areas — as Apollo astronauts quickly discovered. Once inside the lungs the super-fine, sharp-edged lunar dust could cause a slew of health issues, affecting the respiratory and cardiovascular system and causing anything from airway inflammation to increased risks of various cancers. Like pollutants encountered on Earth, such as asbestos and volcanic ash, lunar dust particles are small enough to penetrate deep within lung tissues, and may be made even more dangerous by their long-term exposure to proton and UV radiation. In addition, the research suggests a microgravity environment may only serve to ease the transportation of dust particles throughout the lungs.

Skin Damage. Lunar regolith has been found to be very sharp-edged, mainly because it hasn’t undergone the same kind of erosive processes that soil on Earth has. Lunar soil particles are sometimes even coated in a glassy shell, the result of rock vaporization by meteorite impacts. Even the finer particles of dust — which constitute about 20% of returned lunar soil samples — are rather sharp, and as such pose a risk of skin irritation in instances of exposure. Of particular note by the research team is abrasive damage to the outer layer of skin at sites of “anatomical prominence”, i.e., fingers, knuckles, elbows, knees, etc.

“The dust was so abrasive that it actually wore through three layers of Kevlar-like material on Jack [Schmitt’s] boot.”

– Professor Larry Taylor, Director of the Planetary Geosciences Institute, University of Tennessee (2008)

Eye Damage. Needless to say, if particles can pose abrasive damage to human skin, similar danger to the eyes is also a concern. Whether lunar dust makes its way into the eye via airborne movement (again, much more of a concern in microgravity) or through direct contact from fingers or another dust-coated object, the result is the same: danger of abrasion. Having a scratched cornea is no fun, but if you’re busy working on the Moon at the time it could turn into a real emergency.

While the research behind the paper used data about airborne pollutants known to exist on Earth and simulated lunar dust particles, actual lunar dust is harder to test. The samples returned by the Apollo missions have not been kept in a true lunar-like environment — being removed from exposure to radiation and not stored in a vacuum, for instance — and as such may not accurately exhibit the properties of actual dust as it would be encountered on the Moon. The researchers conclude that only studies conducted on-site will fill the gaps in our knowledge of lunar dust toxicity. Still, the research is a step in the right direction as it looks to ensure a safe environment for future explorers on the Moon, our familiar — yet still alien — satellite world.

Read the team’s paper in full here.

“The Apollo astronauts reported undesirable effects affecting the skin, eyes and airways that could be related to exposure to the dust that had adhered to their space suits during their extravehicular activities and was subsequently brought into their spacecraft.”

– Dag Linnarsson, lead author, Toxicity of Lunar Dust

Top image: Apollo 16 astronaut Charlie Duke with a dust-coated LRV. Side image: a dusty Gene Cernan in the LM at the end of an Apollo 17 EVA. (NASA/JSC)

Rivers of Rock

The Moon may not have ever had liquid water on its surface — despite the use of the term mare, Latin for “sea” and moniker for the large regions of darker material visible from Earth — but liquid did indeed flow on the Moon in ages past… liquid rock, briefly set loose by the impacts that formed its ubiquitous craters.

When large meteorites impacted the Moon, crust at the site would melt and get flung outwards, flowing downhill as rivers of rock and creating streams and pools of melted material before cooling and solidifying. There the rivers would remain, a permanently-hardened testament to the event that made them.

The image above, part of a NAC scan acquired by NASA’s Lunar Reconnaissance Orbiter on March 9, shows a solidified melt flow dating back to the creation of Tycho crater approximately 108 million years ago –which may sound like a long time but it’s actually very recent for large-scale lunar features.

The flow is interrupted by a younger, 400-meter-wide crater that impacted the lunar surface along its length. Since it punches through the melt flow as well as the local surface, it would be a great place for future astronaut geologists to explore!

Taken under slightly different lighting conditions, the image below shows a large melt pond that the flow above terminates in. The pond is about 4500 meters long by 2100 meters across (2.8 x 1.3 miles).

Such images wouldn’t be possible without the awesome Lunar Reconnaissance Orbiter. Launched on June 18, 2009, LRO explores the lunar surface from an altitude of only 50 km (31 miles). Read more on the LRO site here.

Image credits: NASA/GSFC/Arizona State University

Surface of the Moon

Earth's Moon
Earth's Moon

[/caption]Despite the close proximity between the Earth and the Moon, there’s a big difference between the surface of the Moon and of Earth’s. Much of the difference between the two celestial bodies is caused by the absence of the following attributes on the Moon: an atmosphere, bodies of water, and plate tectonics.

Since the Earth’s Moon doesn’t have a significant atmosphere, nothing can stop even the smallest meteoroids from striking its surface. As a result, the lunar surface is heavily cratered. As a matter of fact, tiny craters are quite common even on lunar rocks. This was observed on the Moon rocks brought home by the Apollo missions.

By contrast, small meteoroids that pass through the Earth’s atmosphere are easily vaporized and hence are not able to form craters on the land below.

The absence of liquid water on its surface has allowed the Moon to preserve much of its ancient geological features. Here on Earth, erosion can alter and cover formations over time. Plate tectonics, which is also absent on the Moon, is another big factor that makes the terrain of the two celestial bodies different.

Here on Earth, plate tectonics cause volcanic activities, earthquakes, and sea floor spreading.

Due to the lack of water and atmosphere, the lunar regolith (also called “lunar soil”) is noticeably dry and devoid of air. It also does not contain anything organic. The regolith comes from meteor impacts that has plagued the Moon since its inception.

Impact crater sizes on the lunar surface range from the tiny holes that mark lunar rocks to the really big ones like the South Pole Aitken Basin that has a diameter of approximately 2,500 km. Younger craters are superimposed over older ones. This characteristic is used by scientists to determine the relative ages of impact craters.

Basically, it has been observed that the size of impact craters on the surface of the Moon have decreased over time.

Other prominent geological features found on the surface of the Moon include maria, rilles, domes, wrinkle ridges, and grabens.

The maria, which comprise about one-third of the Moon’s near side, are made up of flows of basaltic lava formed from volcanic activities that occurred in the younger years of the Moon. They were once mistaken for seas on the surface of the Moon, hence the name. Maria is the Latin word for seas. The near side refers to the side of the Moon that is constantly facing Earth.

Here’s a list of popular craters on Earth from Universe Today.

Come October 9, 2009, LCROSS will perform a lunar impact. Find out which crater NASA has chosen for the impact. If you want to know more about the largest crater on the Moon, NASA’s got the right stuff.
There are some interesting episodes from Astronomy Cast that we’d like to recommend:
The Source of Atmospheres, the Vanishing Moon, and a Glow After Sunset
The Moon, Part 1

References:
http://www.nasa.gov/mission_pages/LRO/multimedia/lro-20100709-basin.html
http://curator.jsc.nasa.gov/lunar/letss/Regolith.pdf